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We decompose the compatibility equations of steady rotational gas flows and obtain solutions in three
dimensional flows and also Mach numbers on the surfaces (i) small spherical balls (ii) in circular tunnels. The
cavity ratio for the critical Mach number is discussed using hodograph transformation.
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1. Introduction

The study of plane incompressible potentia flow has been developed to a consisent and fairly
complete mathematical theory. The determination of path profilesis an extremal problem in fluid dynamics.
Among all profiles with a given ratio of width to length, we determine the shape of the profile for which the
maximum criticdl Mach number is achieved. The criticd Mach number is the value of the incident Mach
number for which the sonic velocity is first atained on the profile. Fisher (1962) obtained the Mach number
of subsonic cavities with sonic free streamlines. Bagewadi and Siddabasappa (1993) studied the plane
rotating viscous MHD flows by using differential geometry techniques. Prim (1953) studied steady rotational
flow of ideal gases. Further, Chandna and Smith (1971) studied some steady plane rotational flows of gases
with an arbitrary equation of state. In this paper, we obtain the Mach number for rotational flows.

This paper is organized as follows: in section 2, the compatibility equations are stated and the
decomposition of the equations for three dimensional flow is carried out to get the value of the Mach
number. In section 3, the Mach number is obtained for the flow emanating from spherical ball and inside a
circular tunnel. In section 4, the cavity ratio is calculated to obtain the va ues of the Mach number using a
hodograph transformation.

2. Compatibility equations

In the absence of external forces and heat conduction, the system of equations governing steady
motion of a compressiblefluid is as follows (Berker, 1956)

ra=-gradp (Euler’ s dynamical equation), (2.1)
div (r q) =0 (continuity), (2.2)
q>grads=0 (energy), (2.3)
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r=r (p, s) (equation of state) (2.4)
where r isthe density of fluid, p is the pressure, s is the specific entropy, q is the velocity vector, a is the

accel eration vector.
From Egs (2.1) and (2.2), we have

ascurla=0, 0]

curlu=0, (i)

curla” - adivq
g ’

where u=gradinr grato. (2.5)

Thevdodty of thefluid can be determined from Eqgs (i) and (ii). The dengity and the pressure arethen given by
r =expyar. (2.6)
Using Egs (2.3) and (2.4) , we abtain

grad Dxeurla =0, (iii)
q

p=-(yaxr 2.7)
where g=divg and m=q>a. Further, it can be shown that
a>curlu=0. (2.8)
Due to the compatibility equations, the ratio (m/q) isafunctionH of pand r only
m
_:H(p,r), (2-9)
q
The equation of stateis found by integrating

RCIPTYRRRY I 2.10
o (p,r)ﬂp - (2.10)

For a Prim gas, we obtain

curlgGEH ag: 0, (2.11)
mg

instead of Eq.(iii).
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2.1. Decomposition of compatibility equations

Le (x, h,y ) be the orthogona curvilinear co-ordinates in which the arc length in this system is of the form

ds? = gZ(x,h,y Jdx2 + g (x,h,y )dh? + g2 (x,h,y )dy 2 (2.12)

where g,, 9,, g5 are metric coefficients.

Taking the curve through any point, along which x increases as our streamline, we get the
orthogonal curvilinear net in natural co-ordinates. Let e, e,, and e; be the unit tangential vectors to the
three orthogonal curves e apoint intheincreesing directions x ,h and y  respectively, then the vdodity g is given by

q=u(xhy)e. 2.13)

We can express the compatibility conditions (i) (ii) and (iii) in terms of the curvilinear co-ordinates
introduced above as follows

2 2
— u TIU + u & u ﬂgles (214)

g; Tx 9,9, fh 9193 1%

. 1
g=divg= g,9su (2.15)
019293 '"X( 253 )
m= qmzu—ﬂ (2.16)
g; Tx
2
cula=—t Iﬂa’ M9, 9 ﬂgngel+

0.9 1y §0: Th 5 ThEar Ty 3

11187 99,0 ﬂaEﬂuouo
000 1 Tx50; Ty 5 T & Txg

+

(2.17)

1 |11a11 ‘ﬂglo ﬂaEﬂudJ

010, 1160, Th 5 ThE Txg)

Using Egs (2.13) and (2.17) in EQ.(2.5) and consequently using this value of u and Eq.(2.14) in
Eq.(2.8), we have

I\J

e l]
Aﬂ ®g; Hfu I 1 1
lo lo
1« Spdn ‘"ht gggzgs%'ﬂx T'"X'"h( 0gg,)- ﬂh( gg)ﬂ ( ggzgs)g G
é — U
é X a
é U
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S ﬂ ﬂ I ®g; Hu I q° u
lo - lo (Io
1?'"X'"y "wi g0, g1 Tﬂx‘l]y( 99:) y( 99 ggzgsg
g u
e x
e
: @
R FUG L S Y N
The, WiEa, 1Y 2 gg,q, ™ W g (9290
g x 1929370 i
é u
111 9®°7% 1 99, 1 a
TS iT® e N g, 1 4y
Ty &, T0ixEa, thg) o o T th o (92030)0
g X 1 1 e

Equation (2.11) can be decomposed into the following equations

ef g, 0 €1 fg. u
1 Ex (9295 )'nhﬂ q@ ﬂx(gzgs Vgy 4,
Ty é Tu g fhe Tu a

g 9192931] H g 019293 ™

'ﬂ( g, 0

0200)h . 6o (g,g5u) 191

ﬂ'n ST u+1;n e'n ﬂ'n y 4,
y &€ 0,03U X é

g 293 E e glgzgsﬁ E

eﬂ ﬂglu ,ﬂ

6 (92030} 0ty o e (92050 )i
16—:1] Th g 1 e—'"X G=0.
e g gogs 10 U The go0qu ¢

& x 0 & H

Hence veocity can be determined by using Egs (2.21), (2.22), (2.23) and (2.5). Let

u :U(x h,y)el,
be the vel ocity solution for the problem. Using Eq.(2.24) in Eq.(2.2), we get

f(hy)
g,93U

r =

CE\C\C C C c

, (2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

where f(h,y) is an arbitrary function of h and y . Employing components of a given by Eq.(2.14) in

Eq.(2.1), we get
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P fogle) ), 229)

Solving Eq.(2.26), we aobtain p. Using Egs (2.15) and (2.16) in (2.9), we have

9293U21;LU
H(p, r):—ﬂ . (2.27)
ﬁ;(gzgsU)

Finaly, the Mach number M = (U/c), c velocity of sound (c2 = dp/dr) isgiven by

09(9,9s))

(log(U))

(2.28)

ol
M= (1
T

X
3. Calculation of the Mach number

3.1. Radial flow from the surface of a small spherical ball

We study this problem in the spherical co-ordinate system whose metric coefficients are given by
gl(x,h,y):l, gz(x,h,y):x, g3(x,h,y):xsinh. (3.1

Using Eq.(3.1) in Egs (2.18) and (2.19), we obtain the equati ons satisfied by the ve ocity u(x, hy ) as

X Wa_g, (3.2)

N aTxfh g _
76 Tu =0, (3.3)

-

e u
é ™ g

and Eq.(2.20) is automatically satisfied. Equation (iii) gives
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fTu T°u fu T%u _

— = (3.4
x Ixfy Ty Txfh

Also from Egs (3.2), (3.3) and (3.4), we get
u(x, h,y)=alh,y)bl)+ch,y) (3.5)

where a(h, y ) b(x) and c(h, y) are the arbitrary functions.
Substituting (3.5) and (2.17) in the Euler’s dynamical eguation in the direction of x - increasing and
using p as afunction of x alone, we get

=y Yaly )0y ] 9

where r ; isan arbitrary constant. Employing (3.5) and (3.6), we get

pih.y )= po - (‘)tif)dX- (37)

X

Then we obtain the Mach number M = (U/c) as

_ |1, Aalhy Jolx)+Clhy
M‘\/l ahybh) 39

3.2.Flow of gasesin acircular tunnel

We study the flow of gases, inside a circular tunnel when there are no externa forces. We take the
natural co-ordinate system to bea cylindrical coordinate system in which metric coefficients are given by

g;=h, g, =1, and g;=1. (3.9

Compatibility Eqgs (i) and (iii) give

g uo_ 1, 3.10
€0 x 1094). (3.10)
2 2
Tu v u Tu _ (3.12)
hixTy 1y xih
Therefore,
u(x,h,y):a(h,y)b(x)+c(h,y). (3.12)

Using Eq.(3.12) in Egs (3.10) and (3.11), we get
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1 g?og E y;%: ﬂlhgog;gig%m ch,y)=kalh,y). (3.13)
Finally, we have u(x, h,y ) = a(h, y ) d(x) . (3.14)

From Eq.(2.14), we get
a=——e +t—e,. (3.15)

Substituting Egs (3.15) and (2.25) in Euler's dynamical eguation in the directions of x and h
increasing, we get

r(x,h,y):hr—0 (3.16)

a?(h.y )d(x)

where r ; isan arbitrary constant. Using Egs (3.12) and (3.16) in Eq.(2.26) and integrating, we get

p(x,h,y )= po - %(X) (3.17)

Findly, by using Eq.(2.28) the Mach numberis M =1.
4. Transformation to the Hodograph plane

The stream function y (x, y) for a subsonic irrotational steady compressible fluid flow is given by a
non linear dliptic partial differential equation

[(rC)Z-yi] yxx+2yxyyyxy+[(r0)2-y§] Yy =
4.1)

y

(re)?

where r isthe fluid density, cisthe speed of sound, and r and c are functionsof y , and y , . The velocity

2
X

é u
Y xy tél- Wy =
e H

components (u, v) of thefluid arerelatedto y by
ru=y, and rv=-y.,. (4.2

Taking the x-axis as the axis of symmetry paralld to the incident flow and the y-axis as the axis of
symmetry orthogonal to the incident flow, the region of interest consists of the semi infinite domain D
bounded by the x-axis exterior to the plates, the two parald half plates and the free streamline surmounting
the half plates asillustrated in Fig.1. The condition that Eq.(4.1) is dliptic
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q2 =u?+v?, g=tan "—. (4.3)
u
Namely, u? +v? <c?, is equivalent to therelation M <1 where M = qg/c is the Mach number and

the velocity of sound is given by c? = dp/dr and the pressure density istakentobe p =constant r ". Under
the normaization q=c=1 for M =1.

C D L
FREE
BOUNDARY
A B F G

Fig.1. Region of interest in the physical plane

Further, the transformation to the Hodograph (q, I ) plane given by

2
d _Ji-m? 44
dq q
Under this transformation, Eq.(4.1) becomes
+1  M?
Y||+yqq+g(|)Y| =0, g('):'gT— (4.5)

YD

and the corresponding domain is depicted in Fig.2. In the (Q, I ) —plane the differential equation islinear and
is dgmplified to the farm of Lgpladan plus a lower order term. Further, the region of interest is a semi-infinite dit
rectangular domainwiththeorigind free boundary transformed into the segment of the g -axisbetween - p/2 and p/2.

A
-2 D w2
C L 6
A G
] D
BI|F
B I

Fig.2. Region of interest in a pseudo | ogarithmic Hodograph plane.
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The singularity S(q, | ) for a compressible subsonic flow is

S(a, 1 )imfifg+i( - 1)} (4.6)

where | ; corresponds to point A (Fig.2) in our formulation.

After obtaining a solution for Eq.(4.3) in the (Q,I ) plane one adbtains in the physica plane from the
integrations

x(q,l ): @<qdq+xI d = @<qdq+xqqI dl and y(q,l ): d/qdq+yqqI dl 4.7
1€ [1-m? _ 1 .
where Xq=-—&q cosq+y sinqu, xq——[qucosq-yqsmq],
rqg q § rq
1 1- M?) . 1 .
and Yq =ﬁ[- yqiT)smqwqcosq], Yq :ﬁ[qy qsmq+chosq]-

ap

All integrations are carried out from afixed point [taken as QE,- ¥ 9] to avariable point (q, I ) The
e [4]

integrands in Eq.(4.7) are y 4(q,0)=0 and y, (p/2,1)=0.
Therefore, EQ.(4.7) can be written as

q=0

17
X== 0 (1' Mz) y | cosqdd,
9=p/2
I'=0
(4.8)
1 q:\o ' I=\0 1
Y=+ O (1- MZ) yisingdg- ) — (1- MZ) y odl
q=p/2 1=y "4
I'=0 g=p/2
where r” =r(c). The integrands for q in Eq.(4.8) are indeterminate in the present form since (1- M 2)]/2

tends to zero and y, becomes infinite as | tends to zero. Therefore the partial differential Eq.(4.4)

. Y3
goproachesthe Tricomi equation Dy + Y =0 and one can show thet IIi®rrg)yI \/(1- MZ) -2 e3(g+1)3
a

3 317382
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Nomenclature

a —acceleration vector
¢ —velocity of sound
e,,e,,e3 — Unit tangential vectors
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01,092,903 —Metric coefficients and

p —pressureof the gas
s —gpecific entropy
g —velocity vector
r —dengity of gas
n  —viscosity of the gas
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