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We decompose the compatibility equations of steady rotational gas flows and obtain solutions in three 
dimensional flows and also Mach numbers on the surfaces (i) small spherical balls (ii) in circular tunnels. The 
cavity ratio for the critical Mach number is discussed using hodograph transformation. 
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1. Introduction 
 
 The study of plane incompressible potential flow has been developed to a consistent and fairly 
complete mathematical theory. The determination of path profiles is an extremal problem in fluid dynamics. 
Among all profiles with a given ratio of width to length, we determine the shape of the profile for which the 
maximum critical Mach number is achieved. The critical Mach number is the value of the incident Mach 
number for which the sonic velocity is first attained on the profile. Fisher (1962) obtained the Mach number 
of subsonic cavities with sonic free streamlines. Bagewadi and Siddabasappa (1993) studied the plane 
rotating viscous MHD flows by using differential geometry techniques. Prim (1953) studied steady rotational 
flow of ideal gases. Further, Chandna and Smith (1971) studied some steady plane rotational flows of gases 
with an arbitrary equation of state. In this paper, we obtain the Mach number for rotational flows. 
 This paper is organized as follows: in section 2, the compatibility equations are stated and the 
decomposition of the equations for three dimensional flow is carried out to get the value of the Mach 
number. In section 3, the Mach number is obtained for the flow emanating from spherical ball and inside a 
circular tunnel. In section 4, the cavity ratio is calculated to obtain the values of the Mach number using a 
hodograph transformation.        
 
2. Compatibility equations 
 
 In the absence of external forces and heat conduction, the system of equations governing steady 
motion of a compressible fluid is as follows (Berker, 1956) 
 
  pgrad−=ρa           (Euler’s dynamical equation), (2.1) 
 
  ( ) 0=ρqdiv             (continuity), (2.2) 
 
  0s =⋅gradq            (energy), (2.3) 
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  ( )sp,ρ=ρ               (equation of state) (2.4) 
 
where ρ  is the density of fluid, p is the pressure, s is the specific entropy, q is the velocity vector, a is the 
acceleration vector.  
 From Eqs (2.1) and (2.2), we have  
 
  0=⋅ aa curl , (i) 
 
  0=ucurl , (ii) 
 

where  
aq

qaqau
⋅
−×

ρ=
divcurlIngrad ,          0≠⋅aq . (2.5) 

 
 The velocity of the fluid can be determined from Eqs (i) and (ii). The density and the pressure are then given by 
 
  ∫ ⋅=ρ druexp . (2.6) 

 
 Using Eqs (2.3) and (2.4) , we obtain 
 

  0=⋅
θ
µ acurlgrad , (iii) 

 
  ∫ ⋅ρ−= drp a  (2.7) 

 
where qdiv=θ  and aq ⋅=µ . Further, it can be shown that  
 
  0=⋅ ua curl . (2.8) 
 
 Due to the compatibility equations, the ratio ( )θµ  is a function H of p and ρ only 
 

  ( )ρ=
θ
µ ,pH . (2.9) 

 
 The equation of state is found by integrating 
 

  ( ) 0
p
spHs

=
∂
∂

ρ+
ρ∂

∂ , . (2.10) 

 
 For a Prim gas, we obtain 
 

  0=







µ
θ acurl , (2.11) 

 
instead of Eq.(iii). 
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2.1. Decomposition of compatibility equations 
 
 Let ( )ψηξ ,,  be the orthogonal curvilinear co-ordinates in which the arc length in this system is of the form  
 
  ( ) ( ) ( ) 22

3
22

2
22

1
2 dgdgdgds ψψηξ+ηψηξ+ξψηξ= ,,,,,,  (2.12) 

 
where 1g , 2g , 3g  are metric coefficients.                                                              
 Taking the curve through any point, along which ξ  increases as our streamline, we get the 
orthogonal curvilinear net in natural co-ordinates. Let 1e , 2e , and 3e  be the unit tangential vectors to the 
three orthogonal curves at a point in the increasing directions ξ , η and ψ  respectively, then the velocity q is given by 
 
  ( ) 1eu ψηξ= ,,q . (2.13) 
 
 We can express the compatibility conditions (i) (ii) and (iii) in terms of the curvilinear co-ordinates 
introduced above as follows 
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  ( )ugg
ggg

1div 32
321 ξ∂
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==θ q , (2.15) 
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 Using Eqs (2.13) and (2.17) in Eq.(2.5) and consequently using this value of u and Eq.(2.14) in 
Eq.(2.8), we have 
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 Equation (2.11) can be decomposed into the following equations 
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 Hence velocity can be determined by using Eqs (2.21), (2.22), (2.23) and (2.5). Let 
 
  ( ) 1eUu ψηξ= , , (2.24) 
 
be the velocity solution for the problem. Using Eq.(2.24) in Eq.(2.2), we get 
 

  ( )
Ugg 32

ψηφ
=ρ

,  (2.25) 

 
where ( )ψηφ ,  is an arbitrary function of η  and ψ . Employing components of a given by Eq.(2.14) in 
Eq.(2.1), we get 
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  ( ) U
gg

p

32 ξ∂
∂ψηφ−

=
ξ∂

∂ , , 

 

  ( )( ) ( )
32

1 gg
gUp ψηφ

η∂
∂
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η∂

∂ ,log , (2.26) 

 

  ( )( ) ( )
32

1 gg
gUp ψηφ

ψ∂
∂

=
ψ∂

∂ ,log .  

 
 Solving Eq.(2.26), we obtain p. Using Eqs (2.15) and (2.16) in (2.9), we have 
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 Finally, the Mach number ( )cU=M , c velocity of sound ( )ρ= ddp2c  is given by 
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3. Calculation of the Mach number 

 
3.1. Radial flow from the surface of a small spherical ball 
 
 We study this problem in the spherical co-ordinate system whose metric coefficients are given by  
 
  ( ) 1g1 =ψηξ ,, ,          ( ) ξ=ψηξ ,,2g ,          ( ) ηξ=ψηξ sin,,3g . (3.1) 
 
 Using Eq.(3.1) in Eqs (2.18) and (2.19), we obtain the equations satisfied by the velocity ( )ψηξ ,,u  as 
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and Eq.(2.20) is automatically satisfied. Equation (iii) gives 
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  0uuuu 22
=

η∂ξ∂
∂

ψ∂
∂

−
ψ∂ξ∂

∂
ξ∂

∂ . (3.4) 

 
 Also from Eqs (3.2), (3.3) and (3.4), we get  
 
  ( ) ( ) ( ) ( )ψη+ξψη=ψηξ ,,,, cbau  (3.5) 
 
where ( ) ( )ξψη ba ,  and ( )ψη,c  are the arbitrary functions.  
 Substituting (3.5) and (2.17) in the Euler’s dynamical equation in the direction of ξ  - increasing and 
using p as a function of ξ  alone, we get 
 

  
( ) ( ) ( ) ( ){ }ψη+ξψηψηξ

ρ
=ρ

,,, cbaa2
0  (3.6) 

 
where 0ρ  is an arbitrary constant. Employing (3.5) and (3.6), we get  
 

  ( ) ( )
ξ

ξ

ξ
−=ψηξ ∫ d'bpp 20,, . (3.7) 

 
 Then we obtain the Mach number ( )cU=M  as  
 

  ( ) ( ) ( ){ }
( ) ( )ξψηξ

ψη+ξψη
+=

',
,,M

ba
Cba21 . (3.8) 

 
3.2. Flow of gases in a circular tunnel 
 
 We study the flow of gases, inside a circular tunnel when there are no external forces. We take the 
natural co-ordinate system to be a cylindrical coordinate system in which metric coefficients are given by 
 
  η=1g ,          1g2 = ,          and          1g3 = . (3.9) 
 
 Compatibility Eqs (i) and (iii) give 
 

  ( )uu loglog
ξ∂

∂
=








ψ∂

∂
ξ∂

∂ , (3.10) 

 

  0uuuu 22
=

η∂ξ∂
∂

ψ∂
∂

−
ψ∂ξ∂

∂
η∂

∂ . (3.11) 

 
 Therefore, 
 
  ( ) ( ) ( ) ( )ψη+ξψη=ψηξ ,,,, cbau . (3.12) 
 
 Using Eq.(3.12) in Eqs (3.10) and (3.11), we get 
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Finally, we have            ( ) ( ) ( )ξψη=ψηξ dau ,,, . (3.14) 
 
 From Eq.(2.14), we get 
 

  2

2

1 eueuu
η

+
ξ∂

∂
η

=a . (3.15) 

 
 Substituting Eqs (3.15) and (2.25) in Euler’s dynamical equation in the directions of ξ  and η  
increasing, we get 
 

  ( )
( ) ( )ξψηη

ρ
=ψηξρ

da2
0

,
,,  (3.16) 

 
where 0ρ  is an arbitrary constant. Using Eqs (3.12) and (3.16) in Eq.(2.26) and integrating, we get  
 

  ( ) ( )
η

ξρ
−=ψηξ

dpp 0
0,, . (3.17) 

 
Finally, by using Eq.(2.28) the Mach number is 1=M . 
 
4. Transformation to the Hodograph plane 
 
 The stream function ( )yx,ψ  for a subsonic irrotational steady compressible fluid flow is given by a 
non linear elliptic partial differential equation 
 

  ( )[ ] ( )[ ] 0c2c yy
2
y

2
xyyxxx

2
y

2 =ψψ−ρ+ψψψ+ψψ−ρ , 
   (4.1) 
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where ρ  is the fluid density, c is the speed of sound, and ρ  and c are functions of xψ  and yψ . The velocity 
components ( )vu,  of the fluid are related to ψ  by 
 
  yu ψ=ρ         and          xv ψ−=ρ . (4.2) 
 
 Taking the x-axis as the axis of symmetry parallel to the incident flow and the y-axis as the axis of 
symmetry orthogonal to the incident flow, the region of interest consists of the semi infinite domain D 
bounded by the x-axis exterior to the plates, the two parallel half plates and the free streamline surmounting 
the half plates as illustrated in Fig.1. The condition that Eq.(4.1) is elliptic  
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  222 vuq += ,               
u
v1−=θ tan . (4.3) 

 
 Namely, 222 cvu <+ , is equivalent to the relation 1<M  where cq=M  is the Mach number and 

the velocity of sound is given by ρ= ddpc2  and the pressure density is taken to be rp ρ= constant . Under 
the normalization 1cq ==  for 1=M .    
 

 
 

Fig.1. Region of interest in the physical plane. 
 

 Further, the transformation to the Hodograph ( )λθ, - plane given by 
 

  
q

1
dq
d 2M−

=
λ . (4.4) 

 
 Under this transformation, Eq.(4.1) becomes 
 

  ( ) 0g =ψλ+ψ+ψ λθθλλ ,              ( )
( ) 232

4

12
1g

M

M

−

+γ
−=λ , (4.5) 

 
and the corresponding domain is depicted in Fig.2. In the ( )λθ,  –plane the differential equation is linear and 
is simplified to the form of Laplacian plus a lower order term. Further, the region of interest is a semi-infinite slit 
rectangular domain with the original free boundary transformed into the segment of the θ -axis between 2π−  and 2π . 
 

 
 

Fig.2. Region of interest in a pseudo logarithmic Hodograph plane. 
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 The singularity ( )λθ,S  for a compressible subsonic flow is 
 

  ( ) ( )[ ]{ } 21
0iiS λ−λ+θλθ Im,  (4.6) 

 
where 0λ  corresponds to point A (Fig.2) in our formulation.      
 After obtaining a solution for Eq.(4.3) in the ( )λθ,  plane one obtains in the physical plane from the 
integrations 
  
  ( ) λ+θ=λ+θ=λθ λθλθ ∫∫ dqxdxdxdxx q,       and      ( ) λ+θ=λθ λθ∫ dqydyy q,  (4.7) 
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 All integrations are carried out from a fixed point [taken as 





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π ,
2

] to a variable point ( )λθ, . The 

integrands in Eq.(4.7) are ( ) 00 =θψθ ,  and ( ) 02 =λπψλ , . 
 Therefore, Eq.(4.7) can be written as  
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where ( )cρ=ρ∗ . The integrands for θ  in Eq.(4.8) are indeterminate in the present form since ( ) 2121 M−  
tends to zero and λψ  becomes infinite as λ  tends to zero. Therefore, the partial differential Eq.(4.4) 

approaches the Tricomi equation 0
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Nomenclature 
 
 a  – acceleration vector 
 c – velocity of sound 
 321 eee ,,  – unit tangential vectors 
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 321 ggg ,,  – metric coefficients and  
 p – pressure of the gas 
 s – specific entropy 
 q – velocity vector 
 ρ  – density of gas 
 µ  – viscosity of the gas 
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