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SLIPFLOW IN THE GAS-LUBRICATED RAYLEIGH STEP-SLIDER
BEARING
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Singular perturbation methods are applied to analyse the isothermal operation of the Rayleigh step dlider
bearing of narrow geometry, when the bearing number is moderate and the gas Iubricant is rarefied, so that ‘slip
flow' occurs. Approximations to the pressure field and load-carrying capacity of such a bearing are obtained; and
theinfluence of step geometry and degree of dlip on those quarntitiesis discussed.
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1. Introduction

The analysis of the operation of a lubricated slider bearing usualy reduces to the problem of
determining the pressure distribution in the bearing, its load carrying capacity, and possibly other appropriate
design characteristics. In the case of the gas-lubricated bearing operating under isothermal conditions, the
governing Reynol ds equation is highly nonlinear, and does not permit solution in closed form. In such a case,
alternative (approximate) solution techniques must be resorted to.

Frequently, a small parameter may be identified in the problem. Then, perturbation methods based
on this parameter may be applied, to construct a closed-form asymptotic expression that approximates the
pressure fiddd in some sense, and which may be used to generate smilar expressions for other design
parameters. Such methods have been applied extensively in the literature.

The Rayleigh step slider bearing is the simplest example of a slider bearing involving a lubricant
film profile displaying a discontinuity; i.e., a step. When the lubricant involved is gaseous and rarefied, so-
called ‘slip flow’ occurs, and the Reynolds equation defining the pressure field must be modified somewhat.
However, the techniques described above are still applicable.

In the dider bearing, the lubricating pressure is generated by the lateral motion of two surfaces which
are not quite paralld. Exampl es can be seen in flying heads for rotating magnetic memories such as hard disc
drives. The steady state pressure distribution and load bearing capabilities of a finite rectangular
gaslubricated slider bearing of narrow geometry was investigated by Shepherd and DiPrima (1983). This
analysis has been extended to the case where a discontinuity exists in one of the profiles in Penesis et d.
(1998). This was dso further extended by Penesis (2002). For the cases listed above, non-slip conditions at
the bearing boundaries were assumed. However, Schaaf and Sherman (1953) described conditions where slip
conditions dominate the boundary layers, and Burgdorfer (1959) used such conditions for the analysis of the
Rayleigh step dlider in two-dimensiona flow.

In the present analysis, the method of matched asymptotic expansions is used, in an approach similar
to those noted above, to investigate the Rayl @ gh step slider bearing in slip flow.

2. Governingeguations

Consider a finite rectangular gas step-slider bearing in slip flow of transverse dimension B and
longitudinal dimension L, as displayed in Fig.1. Choose coordinates X and Z paralld to L and B, respectively.
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The lower surface (the XZ plane here) moves with constant speed U, in the positive X-direction, while the
(stationary) upper surface represented by Y = H (X, Z) has a finite transverse jump along theline X =x,L ,
for some dimensionless O £ x, £ 1. Theboundariesare definedby O£ X £L, - B/2£Z £ B/2, seeFig.1.

Fig.1. Geometry for the general gas slider bearing with step.

If the lubricating film comprises a gas under isothermal conditions, and dip flow conditions prevail
in the beering gap, the modified Reynol ds equation governing the pressurefidd is given by Burgdorfer (1959)
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where P is the pressure, 1 is the gas viscosity and | ,, is the molecular mean free path of the lubricating
film. At the bearing boundaries X =0, L, Z=+B/2, the pressure is assumed to be the ambient, so the
boundary conditions there become

P0,2)=P(L,2)=P(X,+B/2)=P, (2.2)

where P, isthe constant ambient pressure.
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Fig.2. Profile of the wedge step bearing.
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3. Dimensionlessvariables

To non-dimensionalise, define dimensionless variables p, X, z, h by

m-U|'U

where P, isthe ambient pressure at the boundariesand H,, isatypical value for the height (e.g., (H (0, 0))).
For constant temperature

Iy
P

I m

where |, is the value of the molecular mean free path at the boundary. Defining the dimensionless
parameters €, L , K

2
B2 2 | -6nUol k=5 31)

L2 P, (H,)? Hp
respectively, where € is the breadth parameter, L is the bearing number, and K is the Knudsen number, a

measure of the degree of dlip in the flow, converts the boundary value problem (2.1), (2.2) to the nonlinear
equation

o2 'ﬂ e 3'"[33?[ '" é 311pa_3L 1
h +— h +— =e?L —(ph 3.2
xea ep ﬂxg phm za e ﬂzg phm -© 'ﬂx(p) (32

vaidon 0<x<1, - % <z< % , together with the boundary conditions

p(x, +1/2)=1, 0£xE1, (3.3)

p(0, 2)= p(L, 2) =1, -1/2£2£1/2. (3.4)
4. Decomposition into two domains

The pressure dependson al of x, z, L , K, and €. For the case considered here, in which the bearing

isnarrow and L and K are moderate, a perturbation approach based on e ® 0 may be used, so that the L -
dependence and K-dependence will not be displayed explicitly, and p will smply be written as p(x, ya e).
The upper bearing surface will be viewed as consisting of the union of two smooth surfaces defined on
separate domains

0£ X£ Xy, -12£z£12,

and

X EXEL, -12£z£172.
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Clearly, the boundary conditions at the exterior bearing boundaries still hold, while suitable
conditions along the common boundary x = X, arerequired.
Since the pressure is to be continuous there

p(xo—,z,e):p(x0+,z,e):p(z,e) foral €>0, -1/2£z£1/2 4.2

where p(z, e) is afunction to be determined.

The other requirement is that the mass flow across x=x, be continuous. This is obtained by
integrating the partial differential Eq.(3.2) longitudinally across x =X, and applying Eq.(4.1), to obtain the
equation

. Xo+
3(x, z)§L+ K g‘np(x, ze). Lh(x, z); =0. (4.2)

h(x, Z)p(x z. €)p X i

: (%('D\

This condition will be used later to determine a value of the function p(z, e).
Thus, on the first (leading) domain, it is assumed that the pressure p(x, ya e) is the solution of
Eq.(3.2) that satisfies the boundary conditions

p(x,i]/Z,e):l, O£ X£ X,
with

p(O, Z, e) =1 U
y for -12£2£Y2,

pxo- .z €)=p(z e)

while in the second (trailing) domain, it isthat solution satisfying
p(x,i]/Z,e):l, X <XE1,

with

P+ 2 €)=p(z e)u
y for -12£2£12.

p(1. z.€)=1 b

Perturbation methods based on e® 0 are now applied to obtain representations for the pressure
field in the leading and trailing sections of the bearing. Condition (4.2) is then used to construct the function

p(z, e) .
Since p(z, e) is one of the unknown quantities, it is proposed that

p(z €)= po(z)+ ey (2) +e*py(2)+ .. (4.3

where po(z), pl(z), ... are to be determined.
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5. Perturbation analysis away from the step

For the pressure in the leading bearing section, propose, for 0 < e << 1, the expansion (motivated by
only even powers of € in Eq.(3.2)

p(x, z, e) = Po (x, z)+e2 P, (x, z)+e4 P4 (x, z)+.... (5.1)

Substituting the expansion (5.1) into Eq.(3.2) and equating like powers of € yields (to leading order)

K Ofipg U_

€., @
%ghs pog1+ T E_O’ (5.2)
which must satisfy
Po(x 1/2)=1, O£ X£ X, (5.3)
and
p(0,2)=1, on -12£z£12. (5.4)

Now, since pg (x, z) must satisfy the second order differential Eq.(5.2) as well as the conditions

given at (5.3) and (5.4), which constitute the entire boundary in the leading section of the bearing, it may be
argued that for a physically logical expression for the pressure, the leading term of the expansion must be
this ambient pressure value Thus,

Po (x, z) °1. (5.5

Note that, unless po(z):l, po given by this will not meet the boundary condition at the step.

Equating terms of order €2 and using (5.5) then gives the boundary-value problem for p, as

T e +knz) P28y Th

Tzé 91z 6 Mx

p2$(’ ilgz 0’ (56)
e 2g

Thedifferential equation above may be solved subject to the two boundary conditionsa z=+1/2, to give

p2(x 2)=L gFl(X’ 2)- % Fa(x, Z)ﬂ (5.7)

e u

where
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Fy(x, Z):OZ}% (x, s)h(x, s) +K] e ﬂh (x, t)dtHds
2

and

Fo(x, z)= OZ} h™2(x, s)[h(x, s)+ K] ds.

Note that, in general, p, (0, z) and p, (xo, z) do not vanish, so that the expansion 1+e”p, (x, z)

represents the pressure p(x, z) on 0<x<xy, -1/2£z£1/2, through terms of O(ez), but fails in a
neighbourhood of the (local) leading and trailing edges x =0 and x = X, where boundary layer structures

are located. These may be analyzed using a local analysis with local (boundary layer) variables. Standard
arguments (see Shepherd and DiPrima (1983); Penesis et al. (2000)) show that these layers are of O(e) as

€® 0.Thus, near x=0, set x=ex, where X is O(l). Under this change, Eq.(3.2) transforms to

K 0fR_u K 0fR U l
hl h3 __L+_ h3 +__L_ 2 (Ph 5.8
ﬂXgPL - PLh5 X g ‘"Ze T 512 § '"X( ) 7

where P (x, Z, e) ° p(e(, Z, e). Since the bearing is of narrow geometry, it is to be expected that the ambient
pressure will be impressed on the layer region as wel as that away from layers, at least to leading order.
Thusit is proposed that an expansion in theleading layer at x =0 isof theform

P (x, z, e) =1+ ePLl(x, z)+ eZPLZ(x, z)+ (5.9
Substituting (5.9) into (5.8), and equating like powers of €, gives, to leading order
LOPLl——[h3 0, z)+Kh?(0, z]'"PLl i [h3 0, z)+Kh?(0, z]'"PLl =
(5.10)

L %(h(o, 7)) =0.

The expansion (5.9) must satisfy the boundary conditions at x=x =0 and at the edges z=+1/2.
Therefore

P.1(0,2)=P.,(0, 2) =0, -1Y2£2£1/2,
PLl(X’i]/Z):PLZ(X’iJ/Z):O, OE£X<Y¥.

The requirement of the matching condition is that the expansion (5.1), as x® 0, must agree with the
expansion (5.9) as x® ¥ . Thisgives

PLl(x,z)® 0, as X® ¥,



Sip flow in the gas-lubricated Rayleigh step-dlider bearing 599

PLZ(X, z)® pZ(O, z), as X® ¥.
Fromthisit is deduced that

PLl(x, z)° 0,

while the boundary value problem for P, isfound to be
%HJZLﬁim@J», (5.11)
P.,(0,2)=0, PL(x, £1/2)=0, (5.12)
PL(x,.2)® p,(0,2) a x®¥. (5.13)

Letting
PLZ(X, z) = pZ(O, z)+v2 (x, z),

and substituting this into Eq.(5.11), gives the boundary value problem for v, as
LoV, =0, (5.14)
p.(0, 2), (5.15)
v, (x,£1/2)=0, (5.16)
V,(x,2)® 0 a x® ¥. (5.17)

The method of eigenfunction expansions then gives
vz(x,z):g Ae g, (2) (5.18)
n=1
where
1
A, =- (‘_)El[h?’(o, z)+Kh?(0, z)] P2 (0, 2)a,(2)dz, (5.19)
2

and | ,, q, (z) are the eigenval ues and normalised eigenfunctions of the regular Sturm-Liouville system

%g(h?’(o, z)+Kh?(o, z))%% . [h3(o, z)+Kh?(o, z)]qn(z) =0,
(5.20)

dn(t1/2)=0.
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A smilar analysis may be applied in the trailing section x; <x£1, away from the step (x: xo).

Again, there is a leading order expansion 1+ €2 P, (x, z) away from the layer at x=1, with p, given by
Eq.(5.7), using the local definition of h(x, z). This is corrected in the layer by a boundary layer expans on

1+ eZISTZ(Q, z), where x = (1- x)/e isthelayer variable. Here, tildes denote quantities in the trailing section
Xg <X£1,and IST2 = pz(l, z)+ \Tvz(i, z), where W, (i z) is given by the expression ana ogous to Eq.(5.18),

(i z):g B.e ™y (2). (5.21)

Inthe above, M, ¥, (z) are the @ genvalues and el genfunctions of a system anal ogous to Eq.(5.20),
while E’;n areFourier coeffidents and ogousto Eq.(5.19), with h(l, z), P, (1, z) replacing h(O, z), p, (0, z) respectivdy.

6. Analysisin the neighbourhood of the step

In the leading bearing section (0 <x< Xo) , Weintroduce the local (layer) variable

X0 ogzey,
e € g

with p(x0 - €z, e)° Pr (z, Z, e) which converts the original Eq.(3.2) to

K E K o'nPT

g ot | Egh?’PTE? R E_-eLﬂlz(PTh). (6.1)
Here, it is proposed that P has the expansion

Pr(z,z, €)= Pro(z, 2) +ePyy(z, 2) +€2Pp (2, 2) + ..., (6.2)
and substitution and equating like powers of | gives, to leading order

o= 20, 2o + KN, 2) L Pro

+%g 3(xy, Z)Py +Kh? (XO’Z))%PTOEZO’
with

Prolz, £ 1/2) =1, (6.3)

Pro(0, 2) =po(2), (6.4)

Pz, 2)® 1 as zZ® ¥, (6.5)
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since  lim Prolz, 2) = char!% po(x 2)=1. (6.6)

If po(z) L1, there will arise O(e'l) terms that cannot be matched (from the mass flow condition).
From this we can deduce that

po(2)=1,
and consequently
PTO(Z, z) °1.

Substituting this result into Eq.(6.1) and equating the first power of € gives

Ly, Pr1 =lg(h3(><o- ' Z)+Kh2(xo' ' Z))1 PT13+
fz & 1z "0 6.7)
&3 2(y.- A Lp U_
+ = g(h (xo-, 2)+ Kh?(x,-, Z))‘l]z PTlH 0,
with
Pz, +1/2)=0, (6.8)
PTl(O’ Z): pl(z)’ (6.9)
P(z.2® 0 as Z® ¥ (6.10)

where Egs (6.8), (6.9) and (6.10) are found by equating coefficients from Eq.(6.2), and matched with the
conditions at the step.

Equation (6.7) with associated boundary conditions (6.8), (6.9) and (6.10) can be solved using the
method of eigenfunction expansions, and the solution is

¥
Pz, 2)=§ C.e Ve, (2) (6.11)

n=1

where

[

N

C,= [h3(x0— ,2)+Kh?(x,-, z)]pl(z)cn(z)dz, n=123,..

'
NP

arethe Fourier coefficients, while k,, and c, (z) are the eilgenval ues and eigenfunctions of the system

Eéh?’(xo- ,2)+Kh?(xo-, z))dgzn §+ kn[(h3(X0' ,Z)Ry +Kh? (%o~ , Z))]Cn(z) =0,
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ch =(x1/2)=0.

In the trailing section, by replacing P;,(z, z), C,, z, k, and c,(z) in the above equations with

ISLl(E, z), D,. E, n, and f~n (z) respectively, the counterparts of the leading sections variables, gives the
solution for the pressure in the region immediately after the step.

7. Thewedge step bearing

The wedge step bearing is a simplification of the upper surface in the geometry. Here, the height
does not vary in the transverse direction, but only inthe lateral direction, i.e.

h(x, z) = h(x).

Inthis case, Eq.(5.7) becomes

%Lh& x2 16
 Z)=—%5— - 7.1
pZ(X Z) h3 + Kh2 gz 4ﬂ ( )
This gives theresult that
3
v2(x, 2) = Ave "Pan(2) (7.2)
n=1
where
: ae?’Lgcos(np z) n=135,....,
i &h3(0)+ Kh?(0) 5
an(2) =1
i R
e 2 gsin(n =
Ry g pz) n=246,....,
{70003
and then

A =GP0+ kO] 5,0, 2, D). n=1.2.3...

In the trailing section, y ,(z) and B, are easily found using the expressions for q,(z) and A,,
evaluated at x=1. Similarly, cn(z) and C,, may be found evaluating & X, - , while f~n(z) and I5n are
found by using the expressions for qn(z) and A, and evaluating at X, +. For the wedge step bearing,
ﬁ}l :I n = ﬁn = kn :

Now, in the leading section near the step, the solution for Py, is
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Prale. 2= 8 Coe e, (2 73
n=1
where

I e ﬁ o
iG Tcos(npz)  n=135,...,
1803 (. ) +Kh2(x,. )5

ca(2)= : (7.4)
: ® J2 o)
|
1

8. TheRayleigh step

In this section, the case where H (x, z) is a piecewise constant is considered, see Fig.3. That is, in
dimensionless variables

1 for O0E£x£xy, -12£z£1/2,
h(x, z) = J|[ (8.1)

Im for x£x£1 -12£z£1/2, where m:%<1_
f 0

Fig.3. Geometry for the Rayl e gh step gas slider bearing.
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The expression for p, (x, Z, e) is

since h((x):O for O£ XE Xy, X £X£1. Since po(x, Z, e)° 1, which meets the boundary conditions
required at the loading and trailing edges, the pressure a the leading and trailing edges (away from step) is
represented, to al orders of €, by the one term expansion

p(x, Z, e)° 1.

Theoverdl (1 term) expansion and the local layer expansion (at the step) can now be combined to give

1+ ePTlgax_eXOL z§+ O(ez),

whichisuniformly valid over the whole bearing. Here, Py, isgiven by Eq.(7.3).
The mass flow condition, given in Eq.(4.2) becomes, in this case

& Kofp ze)-L=m*&+ K0P ..Z€e-Lm.
§ p g X bo.2.¢ § mp gx b )
With some simplifications, the mass flow condition becomes

§L+ T+ m3§L+

8 p(Xo')ra

K oud
—F—11a hpC,c,lz)=L(1- m),
ol 28 el =L 1
or

L(1- m) :gnpcncn(z)+o(e2).

B )

To leading order, p(z) =1, and so the mass flow conditionis findly

L@-m _ & 3 :
——" 7 = 3 +2npC,cosnpz)+ § v2pp.C.sin(npz)+
(1+ K)(1+ m3) n=1,3,5 n=2,4,6

+term vanishing as e® 0.

Notice that the left hand sideis an even function, and so it follows that

1
npC, =, V2cos(npz)dz, 1=1,35, ....
2
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}'{(::EZ\/EL(;L- m)(- 1)79 1as

f':§n2p2(1+ K)(1+m3)i’ n=135,..,

.I. ﬂ’
) (8.2)
0 n=2,4,6,....

As stated above, the pressure away from the step is represented by the oneterm expansion. For any
improvement in accuracy, higher order termsin the layer must be found.
Equation (8.2) can be used in conjunction with Eq.(7.3) along with the expression for c, for a

uniform pressure throughout the entire Rayl eigh step slider bearing, given by

af-m g

- CoS (2k+1)pz]e (2k+2plx-xol/e (g3

pu(x, Z, e) =1+e

9. Theload

The equation given at Eqg.(8.3) can now be used to calculate the load carrying capabilities of the
bearing. The dimensionless load, W, is given by

[~

‘EQ[ x,2)- 1dx dz. (9.)
2

By using the expression for p, (x, z1 ) found in Eq.(8.3), an approximation to theload is obtained

1

w:(‘)il@le aft-m & (-2)F

2 (1 K)(l 3) (2k N 1)2 COS[(Zk + 1)p z] e (2k+1)p| x- x| /ey diz.
2 P +m®| k=0

The order of integration can be rearranged to give

16L (1- m) 5 1,

p*(1+ K)(1+ m3) oo (2k +2)*

W =¢?

and using the fact that

3 1 4
g(2k+1) "9’

this becomes

__eLt-m 3).
" 6(1+K)(1+m3) O()
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10. Discussion

Equation (8.3) makes use of Egs (8.2), (7.3) and (7.4) to provide a simple procedure for calculating
the pressure distribution in the Rayleigh step slider bearing in slip flow. In this case, the caculations are very
straightforward, with no boundary layers occurring at the leading and trailing edges. In each case, the
approximations are valid for L = O(l) and e® 0.

For the case of the Rayleigh step slider, see Fig.3, the layer at the step is clearly displayed in Fig.4.
Here, the excess pressure at the step for varying z is shown. The maximum occurs aong the midline of the
bearing, where z=0, and as the pressure is measured closer to the boundary at the step, the maximum
decreases. Figure 5 shows a surface plot of the pressure, which clearly shows the presence of a boundary
layer at the step. This agrees with Fig.4, showing that the maxi mum pressure occurs along the midline of the
bearing, where z=0.

Fig.4. One-dimensiona plot of the excess pressurefor varying z, with m:%, Xo :%, €=01,K=1and L =20.

Fig.5. Surface plot of the pressure for the Rayl e gh step slider bearing, with m:%, Xo :%, €=01,K=1
and L =20.
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The graph shown in Fig.6 shows how the load carrying capabilities of the Rayleigh step-slider
bearing change with the Knudsen number. Astheleve of dlip in the flow increases, thereis a decreasein the
maximum load that the bearing is capabl e of sustaining.

.04 9

203

[

=]

-2
i

0.C1 1

Fig.6. Variation of scaled load W with Knudsen number K.

The approximate expressions obtained in previous sections, based on e€® 0, provide simple
methods to estimate the pressure fidd in a bearing in slip flow, and which may then be used to generate
similar expressions for other design parameters.

For agiven € in aRayleigh step dlider, i.e., given breadth to length ratio, and also given operating
conditions, the maximum pressure will only depend on the step height variance, m. For a larger step, the
maximum pressure increases. This is also true for the load of the bearing, which for given €, K and L is
proportiona to

As the step height increases, the load carrying capabilities of the bearing decrease.

The results of this investigation support those found for the cases where non-sip flows were
assumed, in both the presence of boundary layers and in the load capabilities. The vaidity of the influence
that dip flow has on these features has been demonstrated, and must be factored into the solutions.

Nomenclature

A,.B,.C, —Fourier coefficientsin leading and trailing bearing sections (Egs (5.19), (6.11))
H, h —dimensional, dimensionless bearing gap profile function
H, —typical valueof H

K —Knudsen humber (Eq.(3.1))
L, B —longitudina and transverse bearing dimensions
P, p —dimensional, dimensionless bearing gap pressure function
P, —constant ambient pressure
P_, Pr,P_,P; —pressuresin layersin leading and trailing bearing sections
p, - leadingorder uniformly valid pressure approxi mation (Eq.(8.3))
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Po. P2,... —pressure components away from layers
U, - constant speed of bearing lower surface
W —dimensionless load (Eq.(9.1))
vy, W, —layer correctionsin leading and trailing bearing sections
X,z —dimensionless X, Z
%o —dimensionless location of step

X, Z —longitudinal and transverse bearing space variables
n —gaslubricant viscosity
| » — molecular mean free path

€ — breadth parameter (Eq (3.1))
L —bearing number (Eq (3.1))
p,Po. P1,... — pressureand pressure components aong step (Eq.(4.3))

x,x,z,z —loca variablesin layersin leading and trailing bearing sections
dn:Y n.Cn —layer eigenfunctionsin leading and trailing bearing sections
I .My, k, —layer eigenvaluesin leading and trailing bearing sections
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