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This paper analyses the two dimensional free and forced convection flow and heat transfer in a vertical wavy
channel with travelling thermal waves embedded in a porous medium. The set of non-linear ordinary differential
equations is solved analytically. The velocity and temperature field have been obtained using perturbation
technique. The effects of non-dimensional parameter on the velocity and temperature profile are shown
graphically. It is observed that the main flow velocity increases with an increase in either permesbility parameter
or the Grashof number. It is remarkable that the flow is reversed at the middle of the channel. It is found that for
small values of frequency parameter it increases while it decreases for large values of frequency parameter. On
the other hand, the cross velocity decreases with an increase in the permeable parameter whileit increaseswith an
increase in the Grashof number. It is found that for small values of frequency parameter the cross velocity first
increases and then decreases with increase in frequency parameter. The flow is also reversed for the cross flow. It
is seen that the shear stresses at the plates rises with an increase in the permeable parameter. The temperature
profile decreases with an increase in the Prandtl number while it increases with increase in the permeable
parameter. Also it is seen that the heat transfer coefficient increases with an increase in the permeable parameter
but decreases with an increase in the Grashof number.
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1. Introduction

Viscous flow and heat transfer through a porous medium is the subject of intensive studies dueto its
numerous and wide ranging applications. The study of natural convection in a vertica channd is an
important subject due to increasing practical applications in industries. The study of viscous flows bounded
by wavy wall is of specia interest due to its application to transpiration cooling of re-entry vehicles and
rocket boosters, cross-hatching on ablative surfaces and film vaporization in combustion chambers. In view
of these applications, Varavelu (1989) studied the combined free and forced convection in hydrodynamic
flows in verticd wavy channd with travelling thermal waves embedded in a porous medium. Recently,
Chaudhury (2004) investigated the effect of injection on the three dimensional flow and heat transfer through
a vertica paradld plate channd, which is embedded in a porous medium. Takhar (1990) studied the
combined free and forced convection of an incompressible viscous fluid in a porous medium past a hot
vertical plate. But they have not studied the flows through wavy channel in a porous medium.

Theaim of this paper is to study the combined free and forced convection in hydrodynamic flowsin
vertical wavy channd with travelling therma waves embedded in a porous medium (Fig.1). The problem is
solved using perturbation technique. The solution is made on two parts, the mean part and the perturbed part.
These two parts are obtained separatdy. The effects of the non-dimensiona parameter on the velocity and
temperature profile are shown graphically. It is observed that the main flow veocity increases with an
increase in either permeability parameter or the Grashof number. It is remarkable that the flow is reversed at
the middle of the channedl. The temperature profile decreases with an increase in the Prandtl number whileit

" Towhom correspondence should be addressed


mailto:mrinmoy9832@yahoo.com

610 M.Guria and R.N.Jana

increases with an increase in the permeable parameter. Also it is seen that the heat transfer coefficient
increases with an increase in the permeabl e parameter but decreases with an increase in the Grashof number.

)
/ |
/ /

Y—-dls cos Ax i .
Y==d'& cos (ixln)

Fig.1. Geometry of the problem.

2. Basic equations

Consider the unsteady flow of a viscous incompressible fluid through the vertical channel bounded
by two wavy walls embedded in a porous medium. We choose the x™ -axis along the direction of the flow,
the y -axis is perpendicular to it. Let us consider the wavy wals y =d+acosl x and
y =-d- acosl X . For convenience we take y =-d - acos(l "X Hj ) Due to the density variation and
temperature difference aforce is created along the direction of the flow. This forceis called buoyancy force.

The fluid flowing with velocity V through the porous medium experiences aresistance gV /K per unit mass,

where g is the acceleration due to gravity and K is constant called the permeability of the medium. The
viscous dissipation term is neglected in the energy equation. We assume that the wave ength of the wavy
walls, which is proportional to 1/ islarge. We study the combined convective heat transfer and fluid flow

of viscous incompressible fluid through a vertical wavy channe for j =0.

Let u", v’ bethe velocity component dong the x” - and y” -axis respectivey, the unsteady flow of
viscous incompressible fluid is governed by the following equations

u_ WV _o, 2.1)
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where r is the density, p* is the pressure, v is the kinematic viscosity, T is the temperature, a is the

thermal diffusivity, K¢ isthe permeability of the medium.
The boundary conditions of the problem are

u =0, Vv =0, T:Toll+ecos(l*x*+wt)J:le:, a y =d+acosl X,
2.5)
u=0, v =0, T :Tlll+ecos(l*x* +Wt)J:T1¢, a y =-d +acos(l*x* +] )

We introduce the non-dimensional variables

(y)=(y Jd, t=tv/d2, p=pd®/rv, q=(T- )T TY),

(2.6)

(u,v):(u*,v*)d/v, | =1"d, e=a/d.
In terms of non-dimensional variables Eqgs (2.1) to (2.4) become

Tu IV 2o, (27)
ix Ty
M+uM+VE:_H a.l _U -£+G|’ 2.8
g Yy T e T2 kO (28)
n,  Jn,  dn__fp &n '"_;_ﬂ, 2.9)
Tt Ix Ty Ty é W25 K
fa,,Ta (2.10)

1t ‘nx y Pré'nx yzfa

where K =K¢d?, the permeable parameter; Gr = gh(T¢ Tg)d®/v?, the Grashof number; Pr=v/a , the

Prandtl number; | =1"d , the non dimensional wave number; e= a/d , the amplitude parameter.
Let usintroduce the stream function y defined by
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_ Ty
u=-W gg V= (2.12)

Ty X
Using (2.11), Egs (2.8)-(2.10) become

Y xxt +yyyt'yy(yxxx+yxyy)+yx(yxxy+yyyy):yxxxx+2yxxyy+

1 (2.12)
ty yyyy E(y xx TY yy)' Grqy’
1
Q- yyqx+y qu:ﬁ(qxx'i-qyy)- (213)
The boundary conditions (2.5) become
yy=0, y,=0, g=0 a y=1+ecosl x,
(2.14)
yy=0, y,=0, gq=1 a y:-1+ecos(l X+j )
3. Solution of the problem
In order to solve Egs (2.12) and (2.13) we assume that the solution in the form
y (% 1) =y o(¥)+y 1lx v, 1),
(3.1
a(x, . t)=do(y)+as(x y.t)
where 'y, g, arethemean partsand y ;, g, are the perturbed parts a so, we introduce
ya(x y.t)=ee®y(y),  ay(xy,t)=ed g (y).
Using (3.15), the Egs (2.12) and (2.13) and the boundary conditions (2.14) become
in 1
Yo - V& Crag, 3.2
a6 =0, (3.3)
y6=0, Yyo=0, @ =0 a y=10,
(3.4

y§=0, yo=0, gp=1 a y=-10,

to the zeroth order, and
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y¥ iy 8- 12y )iyl - 12y )iy v @ 21y g

1= _ _ (35
+I4y1-E(y!t-I2y1)-Grq?=0,
off - iPrway - 1205 +iPrl {aay § - v 108)=0, (36)
y¢=-yge™, y;=0, q=-¢'"g§ a y=10,
(3.7)
ye=-yge 0™, y =0, g =-e'l"gg a y=-10
to the 1st order and prime denotes differentiation with respect to y. Now we assume
_ i — _ -
y.l,.y)=al'y, ad q.y)=q!" qu. (3.8)

r=0 r=0

Substituting (3.22) in Egs (3.5)-(3.7), we get the following differentiad equations, neglecting the
terms to the order of | 2 and higher.

afh - i Prway =0, (3.9)
v iPrwy g - %m Grag =0, (3.10)
i - iPrway, +i Pr(ay §- v 1006)=0, (3.11)
Tﬁ-iwmﬂygm-iywj-%ﬁ-erq@:o (3.12)

and
yh=-y&™, yip=0, agp=-¢™gf§ a y=10,
yh=-y&l", y=0, gp=-el-"gg a y=-10,
(3.13)
y11=0, 01 =0 a y=10,
y1=0, q;=0 a y=-10.
3.1. Zeroth order solution

The solutions of Egs (3.2) and (3.3) subject to the boundary conditions (3.4) are

2
Y o(y) = Acosh my+B+KG4“/ , (314)
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1
%(y)=(10-y) (3.15)
where
_ - KGr _ KGr(ZCosh m- msinhm) _ 1
=, B= , m=——.
2msinhm 4msinhm JK

3.2.First order solution

The solutions of Egs (3.9)-(3.12) subject to the boundary conditions (3.13) are

Ao (y) = B, coshny + B, sinhny,, (3.16)

E(y): A+ Ayy + Agcosh py + Ay sinh py + A; coshny + Ag sinhny, (3.17)

q_ll(y): B; cosny + B, sinhny - B5sinh(m+ n)y- Bssinh(m— n)y+
- B7cosh(m+ n)y- Bg cosh(m— n)y- Bgyzsinhny— B,pycoshny + (3.18)
- Byyy? coshny- By, ysinhny- Bys - By,y- Bys cosh py- Bygsinh py,

¥ 12(y) = Cy cosh py +C, sinh py - (C3 +Cyg)sinhny - (C, +Cyy)coshny +

- (Cs +Cpp)cosh(m-+ n)y - (Cs +Cys)cosh(m- n)y- (C; +Cyo )sinn(m+n)y +

- (Cg +Cyy)sinh(m- n)y- Coy? coshny- (Cy +Cyp)ysinhny +

- Cyyy?sinhny- (Cy, +Cog)ycoshny - Cy3 - (Cyy +Cys)ycosh py + (3.19)
- (Ci5 +Cy7)ysinh py- Cygsinh(m+ py- Cy; sinh(m- p)y +

- Cygcosh(m+ p)y - Cyg cosh(m- p)y- Cyuy? sinh py- Cyey? cosh py +

- Cysinhmy - Cggysinhmy - Cg, coshmy

where

B, = cos(- wt)+cos(j - Wt)’ B, = cos(- wt)- cos(j - wt)

4coshn 4sinhn

(3.20)
wPr, . 1 LN - DU Y- - D oV
n:W/— 1+i), p=.)—+w ~tan”lwK 2+i siné= tan™ 'wK ;.
2 (1+i) K? g:OSgZ o &2 a

The other constants are not given hereto save space.
Obtaining the expressions of y ; and y ; we evaluate the main flow velocity u and the cross velocity v from
Eq.(2.11) as

u=-[yg(y)+es, cos(l x+wt)- S, sin(l x+wt}] (3.21)
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and
v= e[ylo +] Ll(y)]n ey =_d [vy cos(l x+wt)+vy, sin(l x+wt)]. (3.22)

4. Discusson and results

Zeroth order solutions are naturally gpplicable to the case of a channd whose walls are flat and of
constant temperature. We have obtained the zeroth order solutions y ,, gy and perturbed solutions y 4, Q.

From these we obtain the main flow ve ocity u, the cross flow veocity v and temperature distribution q. In
Figs 2-3 we have plotted the main flow velocity u for different values of the permeability parameter K,
Grashof number Gr and frequency parameter w for Pr=0.044, | =0.02, | x=p/2.0, wt=p/4, j =0.Itis

observed that u increases with an increase in eéther K or Gr. It is remarkable that the flow is reversed in the
region 0£ y £ 1. From Fig.3 it isfound that u increases for small values of w and decreases for large va ues

of w. The cross velocity vis plotted in Figs 4-5 for different values of K, Gr and w for Pr=0.044, | =0.02,
| x=p/2.0, wt =p/4, j =0. Itisseen that v decreases with an increase in K but increases with an increase

in Gr. From Fig.5 it is seen that v oscillates in nature with anincreasein w. Asin primary flow, thereisaso
a flow reversal for the cross flow in the region - 1£ y£0. It is observed from Figs 2-5 that the flow is
symmetrical about y=0.

Next we have drawn the temperature profile q for different vaues of Pr for Gr=5.0, w=5.0,
K=1.0, | =0.02, | x=p/2.0, wt =p/4, j =0 inFig.6. From the figure it is seen that g decreases with an
increase in the Prandtl number.

02 . . . P .

K=1.0, Gr=5.0
K=20, Gr=50
K=40, Gr=5.0
B=1.0, Gr=4.0

Fig.2. Main velocity u for w=5.0, Pr=0.044, | =0.02, | x=p/2, wt =p/4, j =0.
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Fig.4. Crossvedocity vfor w=5.0, Pr=0.044, | =0.02, | x=p/2, wt=p/4,j =0.
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Also we have evaluated the numerical value of q for different values of K, whichis shownin Tab.1.
From the table it is seen that the temperature g increases with an increase in K but the effect of K on the
temperature field q isnegligible

Table 1. Temperature g for Gr =5.0, w=5.0, | =0.02, | x=p/2.0, wt =p/4, j =0

Y q
K=1.0 K=15 K=2.0 K=25
-1.00 0.9949970 0.9949970 0.9949970 0.9949970
-0.80 0.8949917 0.8949919 0.8949919 0.8949920
-0.60 0.7949890 0.7949893 0.7949894 0.7949895
-0.40 0.6949879 0.6949881 0.6949882 0.6949883
-0.20 0.5949874 0.5949875 0.5949876 0.5949876
0.00 0.4949869 0.4949869 0.4949869 0.4949869
0.20 0.3949865 0.3949864 0.3949863 0.3949863
0.40 0.2949864 0.2949862 0.2949861 0.2949860
0.60 0.1949873 0.1949871 0.1949870 0.1949869
0.80 0.0949904 0.0949902 0.0949901 0.0949901
1.00 -0.005003 -0.005003 -0.005003 -0.0050030

The shear stress at any point in the fluid is given by

¢ W o
_+_ (4.2)
by rré ™
In non dimensional form
o
—+——. 4.2
by = vy fxg

At thewavy walls y =1+ecosl x

1= tgo) - elcosl xy §1) + ¢l ( vy, 11(1)] (4.3)

At thewavy walls y =- 1+ecos(| X+]j )

) :t(zo) - e[cos(l x+j )y #- 1)+ei(I X+Wt)y - 1)] (4.4)

where t©) =-y g(1) and t©) =- y g(- 2).
The heat transfer coeff|C| ent is given by

Ya

h=-K—,
iy

4.5

or, Nu = q§(y) + Real Partof ( Dewt)ga(y )) (4.6)
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where Nu is the non-dimensional heat transfer coefficient.
At thewavy walls y =1+ecosl x

Nu = q§(1+ecos! x)+ Real Partof (eei ( X+""t)qq:(1+ ecosl| x))

4.7
(Nu)y=1 = q4(1)+ e[cosl xq@(1)+ Real Part of (ei ( X*‘M)qﬂi)j = Nugo) + eNugl).
At thewavy walls y =- 1+ecos(| X+]j )
Nu = q§(- 1+ecos(l x+] ))+Real Partof (eei(I X+""t)qg:(- 1+ecos(l x+j )))
(4.8)

(Nu)y=1 =qg(1)+ elcos(l x+j )ag(1) + Real Part of (ei(' X*‘M)qq:)] = Nu(zo) + eNu(zl).

Next we have drawn the shear stresses at theplates y=-1 and y =1 in Fig.7 for different val ues of
K against w Pr=0.044, | =0.02, | x=p/2.0, wt =p/4, j =0. It isobserved that the total shear stress t is
same at the two plates and it is significantly affected by K. Here the shear stress at the plates increases with

an increase in K. The heat transfer coefficient Nugl) a the plates y=1 and y=-1 are also same and is
shown in Fig.8 for different values of K and Gr for Pr=0.044, | =0.02, | x=p/2.0, wt=p/4, j =0.

However, the heat transfer coefficient Nugl) is significantly affected by K and Gr.

b T T T T — T

0,Gr=8.0

Fig.7. Shear stress at the plates for Pr=0.044, | =0.02, | x=p/2, wt=p/4, j =0.
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Fig.8. Heat transfer coefficient Nugl) for Pr=0.044, | =0.02, | x=p/2, wt=p/4,j =0.
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Nomenclature

A, B —constants
A(i=1..6) —constants
Bi(i=1..,16) —constants
C(i=1..,34) —constants
d - half the distance between the wavy wall
g — gravitational acceleration
Gr — Grashof number
i —imaginary unity (I :ﬂ)
K —non-dimensiona permeability parameter
K¢ — permeability of the porous medium
m — constant
n —constant

*

p —pressure
p —non-dimensiona pressure
Pr — Prandtl number
S, S — constants
T —fluid temperature
T4 —temperature of the left wall of the channel

TL —temperature of the right wall of the channel
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v —kinematic viscosity

X, Y, Z —non-dimensiond Cartesian co-ordinates
a —thermal diffusivity
€ —non-dimensiona amplitude parameter
I —non-dimensiond wave number
g —hon-dimensiond temperature

do, 01 —Mean and perturbed parts of the temperature
r —density
w —non-dimensiona frequency parameter
y —stream function

Yo.Y1 —Mmeanand perturbed parts of the stream function
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