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This paper analyses the two dimensional free and forced convection flow and heat transfer in a vertical wavy 
channel with travelling thermal waves embedded in a porous medium. The set of non-linear ordinary differential 
equations is solved analytically. The velocity and temperature field have been obtained using perturbation 
technique. The effects of non-dimensional parameter on the velocity and temperature profile are shown 
graphically. It is observed that the main flow velocity increases with an increase in either permeability parameter 
or the Grashof number. It is remarkable that the flow is reversed at the middle of the channel. It is found that for 
small values of frequency parameter it increases while it decreases for large values of frequency parameter. On 
the other hand, the cross velocity decreases with an increase in the permeable parameter while it increases with an 
increase in the Grashof number. It is found that for small values of frequency parameter the cross velocity first 
increases and then decreases with increase in frequency parameter. The flow is also reversed for the cross flow. It 
is seen that the shear stresses at the plates rises with an increase in the permeable parameter. The temperature 
profile decreases with an increase in the Prandtl number while it increases with increase in the permeable 
parameter. Also it is seen that the heat transfer coefficient increases with an increase in the permeable parameter 
but decreases with an increase in the Grashof number. 

 
 Key words: porous medium, permeability, wavy, free and forced convection. 
 
1. Introduction 
 
 Viscous flow and heat transfer through a porous medium is the subject of intensive studies due to its 
numerous and wide ranging applications. The study of natural convection in a vertical channel is an 
important subject due to increasing practical applications in industries. The study of viscous flows bounded 
by wavy wall is of special interest due to its application to transpiration cooling of re-entry vehicles and 
rocket boosters, cross-hatching on ablative surfaces and film vaporization in combustion chambers. In view 
of these applications, Vajravelu (1989) studied the combined free and forced convection in hydrodynamic 
flows in vertical wavy channel with travelling thermal waves embedded in a porous medium. Recently, 
Chaudhury (2004) investigated the effect of injection on the three dimensional flow and heat transfer through 
a vertical parallel plate channel, which is embedded in a porous medium. Takhar (1990) studied the 
combined free and forced convection of an incompressible viscous fluid in a porous medium past a hot 
vertical plate. But they have not studied the flows through wavy channel in a porous medium. 
 The aim of this paper is to study the combined free and forced convection in hydrodynamic flows in 
vertical wavy channel with travelling thermal waves embedded in a porous medium (Fig.1). The problem is 
solved using perturbation technique. The solution is made on two parts, the mean part and the perturbed part. 
These two parts are obtained separately. The effects of the non-dimensional parameter on the velocity and 
temperature profile are shown graphically. It is observed that the main flow velocity increases with an 
increase in either permeability parameter or the Grashof number. It is remarkable that the flow is reversed at 
the middle of the channel. The temperature profile decreases with an increase in the Prandtl number while it 

                                                        
* To whom correspondence should be addressed 

mailto:mrinmoy9832@yahoo.com


M.Guria and R.N.Jana 610 

increases with an increase in the permeable parameter. Also it is seen that the heat transfer coefficient 
increases with an increase in the permeable parameter but decreases with an increase in the Grashof number.  
 

 
 

Fig.1. Geometry of the problem. 
 
2. Basic equations  
 
 Consider the unsteady flow of a viscous incompressible fluid through the vertical channel bounded 
by two wavy walls embedded in a porous medium. We choose the ∗x -axis along the direction of the flow, 
the ∗y -axis is perpendicular to it. Let us consider the wavy walls ∗∗∗ λ+= xady cos  and 

∗∗∗ λ−−= xady cos . For convenience we take ( )ϕ+λ−−= ∗∗∗ xady cos . Due to the density variation and 
temperature difference a force is created along the direction of the flow. This force is called buoyancy force. 
The fluid flowing with velocity V through the porous medium experiences a resistance KgV  per unit mass, 
where g is the acceleration due to gravity and K is constant called the permeability of the medium. The 
viscous dissipation term is neglected in the energy equation. We assume that the wavelength of the wavy 
walls, which is proportional to λ1  is large. We study the combined convective heat transfer and fluid flow 
of viscous incompressible fluid through a vertical wavy channel for 0=ϕ . 

 Let ∗u , ∗v  be the velocity component along the ∗x - and ∗y -axis respectively, the unsteady flow of 
viscous incompressible fluid is governed by the following equations 
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where ρ  is the density, ∗p  is the pressure, v  is the kinematic viscosity, T is the temperature, α  is the 
thermal diffusivity, K ′  is the permeability of the medium. 
 The boundary conditions of the problem are 
 
  0u =∗ ,     0v =∗ ,     ( )[ ] 00 Ttx1TT ′=ω+λε+= ∗∗cos ,     at     ∗∗∗ λ+= xady cos , 
   (2.5) 
  0u =∗ ,     0v =∗ ,     ( )[ ] 11 Ttx1TT ′=ω+λε+= ∗∗cos ,     at     ( )ϕ+λ+−= ∗∗∗ xady cos . 
 
 We introduce the non-dimensional variables 
 
  ( ) ( ) dyxyx ∗∗= ,, ,     2dvtt ∗= ,     22 vdpp ρ= ∗ ,     ( ) ( )010 TTTT ′−′′−=θ , 
   (2.6) 
  ( ) ( ) vdvuvu ∗∗= ,, ,     d∗λ=λ ,     da=ε . 
 
 In terms of non-dimensional variables Eqs (2.1) to (2.4) become 
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where 2dKK ′= , the permeable parameter; ( ) 23

01 vdTTg ′−′β=Gr , the Grashof number; α= vPr , the 

Prandtl number; d∗λ=λ , the non dimensional wave number; da=ε , the amplitude parameter.  
 Let us introduce the stream function ψ  defined by  
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 Using (2.11), Eqs (2.8)-(2.10) become 
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 The boundary conditions (2.5) become 
 
  0y =ψ ,     0x =ψ ,     0=θ      at     x1y λε+= cos , 
   (2.14) 
  0y =ψ ,     0x =ψ ,     1=θ      at     ( )ϕ+λε+−= x1y cos . 

 
3. Solution of the problem 
 
 In order to solve Eqs (2.12) and (2.13) we assume that the solution in the form 
 
  ( ) ( ) ( )tyxytyx 10 ,,,, ψ+ψ=ψ , 
   (3.1) 
  ( ) ( ) ( )tyxytyx 10 ,,,, θ+θ=θ  
 
where 0ψ , 0θ  are the mean parts and 1ψ , 1θ  are  the perturbed parts also, we introduce 
 
  ( ) ( ) ( )yetyx 1

txi
1 ψε=ψ ω+λ,, ,     ( ) ( ) ( )yetyx 1

txi
1 θε=θ ω+λ,, . 

                                     
 Using (3.15), the Eqs (2.12) and (2.13) and the boundary conditions (2.14) become 
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θ′−ψ ′′−ψ ν Gr ,                                                                                                (3.2)                                              

 
  00 =θ′′ ,                                                                                                                   (3.3) 
 
  00 =ψ′ ,     00 =ψ ,     00 =θ      at     01y .= , 
   (3.4) 
  00 =ψ′ ,     00 =ψ ,     10 =θ      at     01y .−= ,    
 
to the zeroth order, and  
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to the 1st order and prime denotes differentiation with respect to y. Now we assume  
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 Substituting (3.22) in Eqs (3.5)-(3.7), we get the following differential equations, neglecting the 
terms to the order of 2λ  and higher.  
 
  0i 1010 =θω−θ ′′ Pr ,                                                                                                   (3.9) 
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  ( ) 0ii 0100101111 =θ′ψ−ψ′θ+θω−θ ′′ PrPr ,                                                             (3.11) 
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   (3.13) 
  011 =ψ ,       011 =θ        at       01y .= , 
 
  011 =ψ ,       011 =θ        at       01y .−= . 
 
3.1. Zeroth order solution 
 
 The solutions of Eqs (3.2) and (3.3) subject to the boundary conditions (3.4) are 
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3.2. First order solution 
 
 The solutions of Eqs (3.9)-(3.12) subject to the boundary conditions (3.13) are 
 
  ( ) nyBnyBy 2110 sinhcosh +=θ ,                                                                                (3.16) 
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 The other constants are not given here to save space. 
Obtaining the expressions of 0ψ  and 1ψ  we evaluate the main flow velocity u and the cross velocity v from 
Eq.(2.11) as  
 
  ( ) ( ) ( ){ }[ ]txStxSyu i1r10 ω+λ−ω+λε+ψ′−= sincos                                            (3.21) 
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and 
 
  ( )[ ] ( )txi

1110 eiyv ω+λλψλ+ψε= ,     ( ) ( )[ ]txvtxvv r1i1 ω+λ+ω+λελ−= sincos .             (3.22) 
 
4. Discussion and results 
 
 Zeroth order solutions are naturally applicable to the case of a channel whose walls are flat and of 
constant temperature. We have obtained the zeroth order solutions 0ψ , 0θ  and perturbed solutions 1ψ , 1θ . 
From these we obtain the main flow velocity u, the cross flow velocity v and temperature distribution θ . In 
Figs 2-3 we have plotted the main flow velocity u for different values of the permeability parameter K, 
Grashof number Gr and frequency parameter ω  for Pr=0.044, 020.=λ , 02x .π=λ , 4t π=ω , 0=ϕ . It is 
observed that u increases with an increase in either K or Gr. It is remarkable that the flow is reversed in the 
region 1y0 ≤≤ . From Fig.3 it is found that u increases for small values of ω  and decreases for large values 
of ω . The cross velocity v is plotted in Figs 4-5 for different values of K, Gr and ω  for Pr=0.044, 020.=λ , 

02x .π=λ , 4t π=ω , 0=ϕ . It is seen that v decreases with an increase in K but increases with an increase 
in Gr. From Fig.5 it is seen that v oscillates in nature with an increase in ω . As in primary flow, there is also 
a flow reversal for the cross flow in the region 0y1 ≤≤− . It is observed from Figs 2-5 that the flow is 
symmetrical about 0y = . 
 Next we have drawn the temperature profile θ  for different values of Pr for 05.Gr = , 05.=ω , 
K=1.0, 020.=λ , 02x .π=λ , 4t π=ω , 0=ϕ  in Fig.6. From the figure it is seen that θ  decreases with an 
increase in the Prandtl number.  
 

 
 

Fig.2. Main velocity u for 05.=ω , Pr=0.044, 020.=λ , 2x π=λ , 4t π=ω , 0=ϕ . 
 



M.Guria and R.N.Jana 616 

 
 

Fig.3. Main velocity u for K=1.0, Gr=5.0, Pr=0.044, 020.=λ , 2x π=λ , 4t π=ω , 0=ϕ . 
 

 
 

Fig.4. Cross velocity v for 05.=ω , Pr=0.044, 020.=λ , 2x π=λ , 4t π=ω , 0=ϕ . 
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Fig.5. Cross velocity v for K=1.0, Gr=5.0, Pr=0.044, 020.=λ , 2x π=λ , 4t π=ω , 0=ϕ . 
 

 
 

Fig.6. Temperature profile θ  for K=1.0, Gr=5.0, 05.=ω , 020.=λ , 2x π=λ , 4t π=ω , 0=ϕ . 
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 Also we have evaluated the numerical value of θ  for different values of K, which is shown in Tab.1. 
From the table it is seen that the temperature θ  increases with an increase in K but the effect of K on the 
temperature field θ  is negligible. 
 
Table 1. Temperature θ  for 05.Gr = , 05.=ω , 020.=λ , 02x .π=λ , 4t π=ω , 0=ϕ . 
 

Y θ  
 K=1.0                   K=1.5                   K=2.0                    K=2.5 

-1.00 0.9949970           0.9949970            0.9949970          0.9949970 
-0.80 0.8949917           0.8949919             0.8949919          0.8949920 
-0.60 0.7949890           0.7949893            0.7949894           0.7949895 
-0.40 0.6949879           0.6949881            0.6949882           0.6949883 
-0.20 0.5949874           0.5949875            0.5949876           0.5949876 
0.00 0.4949869           0.4949869            0.4949869           0.4949869 
0.20 0.3949865           0.3949864            0.3949863           0.3949863 
0.40 0.2949864           0.2949862            0.2949861           0.2949860 
0.60 0.1949873           0.1949871            0.1949870           0.1949869 
0.80 0.0949904          0.0949902             0.0949901           0.0949901 
1.00 -0.005003          -0.005003             -0.005003            -0.0050030 

 
The shear stress at any point in the fluid is given by  
 

  










∂

∂
+

∂

∂
µ=τ

∗

∗

∗

∗
∗

x
v

y
u

xy .                                                                                            (4.1) 

 
In non dimensional form 
 

  







∂
∂

+
∂
∂

=τ
x
v

y
u

xy .                                                                                                    (4.2) 

 
At the wavy walls x1y λε+= cos  
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 The heat transfer coefficient is given by  
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where Nu is the non-dimensional heat transfer coefficient. 
 At the wavy walls x1y λε+= cos  
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 Next we have drawn the shear stresses at the plates 1y −=  and 1y =  in Fig.7 for different values of 
K against ω  Pr=0.044, 020.=λ , 02x .π=λ , 4t π=ω , 0=ϕ . It is observed that the total shear stress τ  is 
same at the two plates and it is significantly affected by K. Here the shear stress at the plates increases with 
an increase in K. The heat transfer coefficient ( )1

1Nu  at the plates 1y =  and 1y −=  are also same and is 
shown in Fig.8 for different values of K and Gr for Pr=0.044, 020.=λ , 02x .π=λ , 4t π=ω , 0=ϕ . 

However, the heat transfer coefficient ( )1
1Nu  is significantly affected by K and Gr. 

 

 
Fig.7. Shear stress at the plates for Pr=0.044, 020.=λ , 2x π=λ , 4t π=ω , 0=ϕ . 
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Fig.8. Heat transfer coefficient ( )1
1Nu  for Pr=0.044, 020.=λ , 2x π=λ , 4t π=ω , 0=ϕ . 
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Nomenclature 

 
 A, B – constants 
 ( )61iAi ,...,=  – constants 

( )161iBi ,...,=  – constants 
( )341iCi ,...,=  – constants 

 d – half the distance between the wavy wall 
 g – gravitational acceleration 
 Gr – Grashof number 
 i – imaginary unity ( )1i −=  
 K – non-dimensional permeability parameter 
 K ′  – permeability of the porous medium 
 m – constant 
 n – constant 
 ∗p  – pressure 
 p – non-dimensional pressure 
 Pr – Prandtl number 
 i1r1 SS ,  – constants 
 T – fluid temperature 
 0T ′  – temperature of the left wall of the channel 
 1T ′  – temperature of the right wall of the channel 
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 v  – kinematic viscosity 
 x, y, z – non-dimensional Cartesian co-ordinates 
 α  – thermal diffusivity 
 ε  – non-dimensional amplitude parameter 
 λ  – non-dimensional wave number 
 θ  – non-dimensional temperature 
 10 θθ ,  – mean and perturbed parts of the temperature 
 ρ  – density 
 ω  – non-dimensional frequency parameter 
 ψ  – stream function 
 10 ψψ ,  – mean and perturbed parts of the stream function 
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