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A similarity analysis is presented to investigate the unsteady boundary layers over a stretching sheet for
specia distributions of the stretching velocity and surface temperature or surface hesat flux. The governing
unsteady boundary layer equations are reduced to ordinary differential equations with two parameters, the Prandtl
number and the unsteadiness parameter. These equations are solved numerically for some values of the governing
parameters using the Keller-box method. Some flow and heat transfer characteristics are determined and
discussed in detail.

Key words: stretching sheet, unsteady flow and heat transfer, boundary layer, numerical results.

1. Introduction

The flow and heat transfer of a viscous and incompressible fluid induced by a continuously moving
or stretching surface in aquiescent fluid is relevant to many manufacturing processes. A number of technical
processes concerning polymers involves the cooling of continuous strips or filaments by drawing them
through a qui escent fluid. Further, glass blowing, continuous casting of metals and spinning of fibresinvolve
the flow due to a stretching surface. In these cases the properties of the final product depend to a great extent
on the rate of cooling which is governed by the structure of the boundary layer near the moving strip. Crane
(1970) seemed to initiate the study of boundary layer flow due to a stretching surface in an otherwise
ambient fluid. He gave a similarity solution in a closed analytical form for the steady boundary layer flow by
stretching of a sheet which moves in its own plane with a velocity varying linearly with the distance from a
fixed point. Since then several authors have studied various aspects of this problem. Carragher and Crane
(1982) investigated the heat transfer in the flow over a stretching surface in the case when the temperature
difference between the surface and the ambient fluid is proportional to a power of distance from the fixed
point. The temperature field in the flow over a stretching surface subject to a uniform heat flux was studied
by Dutta et al. (1985), and Grubka and Bobba (1985), while Elbashbeshy (1998) considered the case of a
stretching surface with a variabl e surface heat flux. Lin and Chen (1998) presented an exact solution of heat
transfer from a stretching surface with a variable heat flux. Gupta and Gupta (1977) examined the heat and
mass transfer for the boundary layer flow over a stretching sheet subject to suction and blowing. The effects
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of power law surface temperature and power law surface heat flux on the heat transfer characteristics of a
continuous stretching surface with suction and blowing were investigated by Chen and Char (1988). Magyari
and Kdler (1999, 2000) obtained ana ytical solutions for the case when the sheet is permeable and aso for
the case when the velocity and temperature of the sheet varies exponentialy with the distance aong the
sheet. Liao and Pop (2004) have recently studied the problem of a steady boundary layer flow due to a
stretching sheet using the Homotopy Andysis Method (HAM) proposed by Liao (2003) and obtained
analytic solutions of the flow characteristics.

The above studies deal with a steady flow only. However, in some cases the flow field and heat
transfer can be unsteady due to a sudden stretching of the flat sheet or by a step change of the temperature or
heat flux of the sheet. When the surface is impulsively stretched with certain velocity, the inviscid flow is
devel oped i nstantaneously. However, the flow in the viscous layer near the sheet is devel oped slowly, and it
becomes a fully developed steady flow after a certain ingtant of time. The flow problem caused by the
impulsive stretching of a sheet has been investigated by a number of authors (Na and Pop, 1996; Wang et al.,
1997 and Nazar et al., 2004). Recently, Elbashbeshy and Bazid (2004) have presented similarity solutions of
the boundary layer equations, which describe the unsteady flow and heat transfer over a stretching sheet. The
governing unsteady boundary layer equations are transformed to ordinary differential equations by
considering the velocity and the temperature of the stretching sheet of a particular form. The governing
similarity equations contain only the Prandtl number and the unsteadiness parameter. Although a similarity
solution is accomplished by these authors, some physically unredistic phenomena are encountered for
specific val ues of the unsteadiness parameter.

The present analysis aims to study the unsteady flow and heat transfer over a stretching sheet in a
viscous and incompressible fluid which is at rest under the similarity conditions considered by Elbashbeshy
and Bazid (2004). In addition, both the variable wall temperature (VWT) and variable heat flux (VHF)
conditions have been considered. The governing equations are solved numerically using a very efficient
finite-difference method known as Kdler-box method.

2. Basic equations

Consider the unsteady flow and heat transfer of a viscous and incompressible fluid past a semi-
infinite stretching sheet intheregion y >0, asshowninFig.1.
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Fig.1. Physica mode and coordinate system.

Keeping the origin fixed, two equal and opposite forces are suddenly applied along the x- axis, which
results in stretching of the sheet and hence, flow is generated. At the sametime, the wall temperature T, (t, x)
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of the sheet is suddenly raised from T, to TW(t,x)(>T¥) or thereis suddenly imposed a hesat flux qW(t,x) at

the wall. Under these assumptions, the basic unsteady boundary layer equations governing the flow and heat
transfer due to the stretching sheet are given by

—+—=0, (21)

2
fu, Ju,  Ju_ Tu (2.2)

Tt Ix Ty qy?’

2
T, Jr + ﬂ:au, (2.3
mt  Ix Ty qy?

subject to theinitia and boundary conditions

t<0: u=v=0, T=Ty for any X, Y,
t30:  u=uy,ltx), v=0,
(2.4)
T=T,tx) (VWT) or 17 _ aultx) (VHE),
Ty

where t is the time, u and v are the velocity components aong the x- and y- axes respectively, T is the
temperature, a is the thermal diffusivity, u is the kinematic viscosity and k is the thermal conductivity.
We assume now that the velocity of the sheet uW(t, x), the sheet temperature TW(t,x) and the heat flux

qw(t, x) have the following form

uW(t,x):cx(l- gt)'l, TW(t,X)=T¥ 2 > (1' gt)-?’/z’
2ux

(2.5)
At x) = (c/u)¥?(1- gt) >
2X

where C is the stretching rate being a positive constant, g is a positive constant, which measures the
unsteadiness and q,, isacharacteristic heat transfer quartity. We introduce now the following new variables

i e

c

(2- gt) ¥2q(h) (vwT), (2.6)

c
2ux?

T =Ty +(awo/K)—— (- gt} ¥%a(h) (VHF)
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where y is the stream function which is defined in the usua way as u=9y /Ty and v=- y/Tx.
Substituting variables Egs (2.6) into Eqs (2.2) and (2.3), they reduceto the following ordinary differential equations

f @+ ff ¢ f'2-AS’T¢+%hfc€:o, 2.7)
e 9

Piqat+fq¢+2faq+-A(3q+hqc):o. 2.8)
r

subject to the boundary conditions (2.4), which become

f(0)=0, f{0)=1, g0)=1 (vwT) o  g(0)=-1 (VHPF),
(2.9)

where Pr is the Prandtl number, A=g/c isanon-dimensiona constant which measures the flow and heat
transfer unsteadiness and primes denote the differentiation with respect to the similarity variable h .
The physical quantities of interest in this problem are the skin friction coefficient C; and the local

Nusselt number Nu, which are defined as

Xq
C,=—%, Nu, = —/——% 2.10
! g k(TW - Tw) ( )

wheretheskin friction t,, and the heat transfer from the sheet q,, are given by

&u o 2T 0

t., = g gy =-k —x (2.11)
" ngﬂy@=0 " gﬂyﬂy:o
with i being the dynamic viscosity. Using variables Egs (2.5) and (2.6), we get
CiRe}? = 1 ¢0), Nu,/Re¥? =-qd0) (VWT),
(2.12)
1

Nu,/Re¥? =—~ (VHF

«/Re] 0 VM

where Re, =u,, x/u isthelocal Reynolds number.

3. Resultsand discussion

Equations (2.7) and (2.8) together with the boundary conditions form a nonlinear two-point boundary
value prablem, which has been solved numerically using a very efficient implicit finite-difference method
known as Kdler-box method, which is discussed by Cebeci and Bradshaw (1984). Results are given for
some values of the unsteady parameter A and the Prandtl number Pr. The accuracy of this numerica
method was validated for the case of (VWT) by adirect comparison with the numerical results reported by
Grubka and Bobba (1985) and Elbashbeshy and Bazid (2004) for the steady-state flow case (A=0) and

Pr=1.0. Table 1 presents results of this comparison for the heat transfer from the sheet, - q((O) . Thevaue
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of the surface temperature, q(O), for the case of (VHF) isasoincluded inthistable It can be seen from this
table that avery good agreement between the results exists.

Table 1. Vaues of the hesat transfer - q((O) for A=0.0 (steady-state flow) and Pr=1.0.

Present Grubka and Bobba (1985) Elbashbeshy and Bazid (2004)
0.99999 1.00000 0.99999

Figures 2 to 4 show the variation of the velocity and temperature profiles f ((h) and q(h) with h for

severd values of the parameter A and the Prandt number Pr. It can be seen from Fig.2 that the velocity
profiles decrease continuously to zero with the increase of the parameter A without any flow reversal. This
is contrary to the results of Fig.1 from the paper by Elbashbeshy and Bazid (2004) where there is a flow
reversd for dl vaues of Al 0 considered. Further, Fig.3 show that the temperature profiles also decrease
monotonously with the increase of A, except for A=0. In this case (A:O) the temperature profiles

overshoot its vaue at the surface of the sheet, as can be seen from Fig.3a. This behaviour is in agreement
with the results of Grubka and Bobba (1985) but not with that of Elbashbeshy and Bazid (2004). However,
we notice from Fig.3b, which, correspond to the case of (VHF) that for A=0 (steady-flow case) the non-
dimensional temperature profile is completely negative within the thermal boundary layer. This negative
profile is a physically unredlistic case. It implies the violation of the second law of thermodynamics where
heat transfer cannot proceed from a lower temperature to a higher temperature. Finally, the effect of Pr on
the non-dimensional temperature profile is illustrated in Fig.4 for some values of Pr and a fix value of
A=0.8. These profiles decrease, while the surface heat transfer increases with Pr, as can be seen from
Tab.2. The physical reason for thistrend is that a higher Prandtl number fluid has a thinner therma boundary
layer which increases the gradient of the temperature. Consequently, the surface heat transfer increases as Pr
increases. It is dso noticed from Tab.2 that for the (VHF) case the wall temperature decreases with the
increase of Pr. However, it can be observed from Tab.2 that there are some di screpanci es between the present
results and those of Elbashbeshy and Bazid (2004), which might lead to the above mentioned reversed flow.
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Fig.2. Veocity profiles for Pr=1 and severa va ues of A.
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Fig.3. Temperature profiles for Pr=1 and several vdues of A. a) Variable wall temperature (VWT); b)
Variable heat flux (VHF).
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Fig.4. Temperature profiles for A=0.8 and several values of Pr. a) Variable wdl temperature (VWT);
b) Variable heat flux (VHF).
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Table2. Values of the hea transfer - q((O), temperature on the wall q(O) and skin friction coefficient
- f tl(O) , for various values of A and Pr.

A 0.8 1.2 10

Pri-a@) | d0) |-7€0) [-ad0) | ql0) |-f€0) -qf0) | d0) |- fqo)
0.01 | 0.092274 | 10.837316 | 1.261042 | 0.114053 | 8.767842 | 1.377722 | 0.150317 | 6.652599 | 1.587362
(0.1016) (13321) | (0.1319) (14691) | (0.1729) (1.7087)

01 | 0.229433 | 4.358565 | 1.261042 | 0.311720 | 3.208012 | 1.377722 | 0.438750 | 2.79204 | 1.587362
(0.2707) (13321) | (0.3576) (14691) | (0.4916) (1.7087)

10 | 0471190 | 212287 | 1.261042 | 0.788173 | 1.268756 | 1.377722 | 1.243741 | 0.804026 | 1.587362
(0.6348) (13321) | (0.9491) (14691) | (1.4086) (1.7087)

100 | 0510385 | 1.959306 | 1.261042 | 1.850897 | 0537664 | 1.377722 | 3.547142 | 0.281917 | 1.587362
(1.2552) (13321) | (24177) (14691) | (3.9814) (1.7087)

() Elbashbeshy and Bazid (2004)

4. Conclusons

The present study provides similarity solutions for the unsteady laminar boundary layer flow and
heat transfer over a dretching sheet. The results show that the non-dimensional velocity profiles are
compressed and suppressed toward the sheet with increasing values of the unsteady parameter A.
Temperature profiles, on the other hand, become fuller and the surface heat flux increases and the wal
temperature considerably decreases with the increase of A. Also, the surface heat transfer increases with
increasing Pr causing a decrease in the thermal boundary layer thickness.

Nomenclature

A —dimensionless measure of the unsteadiness
¢ —dtretching rate
C; —skinfriction coefficient

k —thermal conductivity
Nu, —loca Nusselt number

Pr — Prandtl number
Re, —loca Reynolds number

g, — hest flux at the surface of the sheet
Owo — Characteristic wall heat flux
t —time
T —fluid temperature
T, —Surfacetemperature

Ty —ambient temperature
u,v —Vvelocity componentsalong x- and y- axes
u, - Vvelocity of the moving sheet
X,y — Cartesian coordinates along the sheet and normal to it respectively
a —therma diffusivity of the fluid
¢ — positive constant
h  —similarity variable
q —non-dimensiona temperature
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u —kinematic viscosity
r —density

ty —sSkinfriction

y —stream function
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