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An explicit solution for the nonlinear static and dynamic responses of the functionally graded materials
rectangular plate is obtained. The volume fraction of the materid constituents is assumed to follow a simple
power law distribution. The formulation is based on the first-order shear deformeation theory and von-Karman
nonlinear kinematics. The solution methodology utilizes the quadratic extrapolation technique for linearization,
finite double Chebyshev series for spatial discretization of the variables and Houbolt time marching scheme for
temporal discretization. Numerical results show the effect of volume fraction exponent of the constituent
materials on the nonlinear static and dynamic responses of the plate with different boundary conditions and plate
span to thickness ratio. Analysis results indicate that the effect of the volume fraction exponent n up to two on the
displacement of the plate is more significart.
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1. Introduction

Thin and moderatdy thick plates/panels are one of the mgjor oad bearing structural eementsin high
performance engineering structures. Fiber compasite laminated plates are widely used in structures such as
space structures, nud ear reactor vessdl's, automobiles, turbines etc. They are usualy subjected to severe non-
uniform thermomechani cal 1oading conditions during their service life. The failures of these components are
mainly due to the large amplitude of vibrations under transient loading, buckling or excessive stresses and
deformations induced by thermo-mechanical loadings. The fiber composite laminated plates/panels show
destabilizing effect at devated temperature as the material properties such as the modulus of dasticity
reduces considerably at higher temperature. Also the exact analyses of laminated fiber composites are
difficult due to the presence of a large number of interfaces between the layers. Recent studies on a new
performance material known as functionally graded materials (FGM's) revea that these materials are
suitable for structures exposed to non-uniform service conditions and under high therma environment. The
functionally graded materials are microscopically heterogeneous and made from isotropic materials such as
metals and ceramics. In functionally graded materials, the material properties are graded continuously and
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vary smoothly from one surface to another and thus the disadvantage of interfaces in the laminated
composites are eliminated.

The nonlinear static and dynamic analyses of isotropic and fiber reinforced composite laminated
plates have been carried out by many investigators using an analytical approach, mainly employing
generalized Fourier series and finite € ement based numerical tools. A detailed comprehensive review of the
problems related to the geometric nonlinear analysis of composite plates and nonlinear vibration of plates
using anaytical and finite elements methods are presented by Chia (1988) and Sathyamoorthy (1987),
respectively. Tauchert (1991) presented a classical review of the flexure, buckling and vibration of plates due
to thermal loading. It can be seen from the literature that considerable efforts are made for the analysis of the
composite laminated plates/panels.

In recent years the functionally graded materials have found increased applications in advanced
engineering structures which are exposed to high temperature environment, since they were first reported in
1984 in Japan (Koizumi, 1993). The andyses of the functionally graded materials plates/panels have
received considerabl e attention of the researchers in recent past. Finot and Suresh (1996) presented a closed
form solution based on the classical Kirchhoff’s theory of thin plates for the analysis of multilayered and
functionally graded material plates, subjected to thermal loading. The dynamic thermoel astic response of the
functionally graded cylinders and plates are obtained by Reddy and Chin (1998). Praveen and Reddy (1998)
obtai ned the nonlinear transient thermoel asti ¢ response of the functionally graded ceramic metal plates using
aplate finite d ement method, employing transverse shear strain, rotary inertia and von-Karman nonlinearity.
Loy e al. (1999) presented a free vibration analysis of simply supported FGM thin cylindrical shells.
Pradhan et al. (2000) presented the solution for free vibration of FGM cylindrical thin shells for different
boundary conditions. Reddy (2000) obtained the Navier's solution of rectangular FGM plate using finite
edement based models and incorporating third order shear deformation theory and von-Karman type
nonlinearity. Zhong and Shang (2003) obtai ned three-dimensiona anal ytical solutions for a simply supported
functionally gradient piezodectric plate. Employing classical nonlinear von-Karman plate theory, Ma and
Wang (2003) investigated axisymmetric large defl ection analysis of a functionally graded circular plate Vel
and Batra (2002, 2003) presented an andytical solution for the three dimensional analysis of simply
supported functionally graded rectangular plate subjected to thermal and mechanical loadings. Yang and
Shen (2003) presented a semi-numerical approach for the nonlinear bending analysis of the shear deformable
functionally graded rectangular plate subjected to thermo-mechanical loading. From the available literature,
itis evident that less attention has been paid to the nonlinear analysis of the functionaly graded plates and
analytical solutions to the nonlinear static and dynamic responses of the FGM plates are a few. In order to
have the reliable service and lifetime prediction of the FGM plates, it is necessary to clearly examine the
nonlinear response of the FGM plates under different loading conditions, so that the influence of the graded
material properties can be understood thoroughly. Hence, there is a need to obtain the nonlinear response of
the FGM plates, analyticaly, in order to have a better understanding of their behavior.

In the present paper, an attempt is made to obtain the analytical-numerical type solution for the
nonlinear static and dynamic responses of the moderately thick functionally graded materias plates. The
present methodol ogy of the solution is based on the fast converging finite double Chebyshev series, which
can be used for plates with different boundary conditions. The mathematical formulation is based on first-
order shear deformation theory and von-Karman nonlinear kinematics. The properties of the plate are
considered to vary across the thickness of the plate according to power law. The effects of volume fraction of
the material constituents on the nonlinear static and dynamic displacement responses of the FGM plate with
different combinations of the boundary conditions and plate span to thickness ratio are investigated.

2. Problem formulation
2.1. Functionally graded material plates

Functionally graded materials are composite and microscopically inhomogeneous with mechanical
and thermal properties varying smoothly and continuously from one surface to the other. These materials are
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made from a mixture of ceramics and metals or combination of different metals by gradually varying the
volume fraction of the constituent metals. The properties of the plate are assumed to vary through the
thickness of the plate A simple rule of a mixture based on power law is used to obtain the effective
properties of an FGM plate of thickness h shown in Fig.1. The effective properties of the FGM plate can be
written as (Praveen and Reddy, 1998)

.n
E(Z): Em+(Ec' Em)?’zz-'-hg , (2.1)
e 2h g
.n
I’(Z):I’m+(l’c- rm)éﬁz-khg (2.2
e 2h ¢

where E;,r. and E,,r,, ae the corresponding properties of the ceramic and metals, z is the thickness

coordinate ( h2E£z£h 2), and n is the volume fraction exponent which takes values greater than or equal
to zero. The value of n=1, indicates the linear variation of the composition of the materias through the
thickness and n=0 represents afully cerami ¢ plate. The Poisson’ sratiois assumed to be constant for both the meterids.

n(z)=n. (2.3
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Fig.1. Geometry of the FGM plate.

2.2. Governing equations of motion

A rectangular plate of dimensions a, b, and h shown in Fig.1, is considered for the analysis. Based on
the first-order shear deformation theory, the displacement fidd at apoint in the plate is expressed as

U(x v, z.t)=ug(x, y, t) + zg,(x y.1),
V(x v,z t)=vo(x, v, t) + g, (x, . 1), (2.4)

W(x, y, z,t)=wo(x, y, 1)
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where uy, ny and w, are the displacements at a point on the mid-plane of the plate in x, y and z directions,

respectively. g, and g, aretherotations of yz and xz planes of the plate, respectively.

Employing the von-Karman nonlinearity, which takes into account moderatdy large deformations

and small strains, the strain-displacement relations are expressed as

i 2 U
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(2.5)

The constitutive equetions for the FGM plae with plane stress condition and transverse sheer is given by
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The in-plane force and moment resultants of the plate are expressed as
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The transverse shear forces are expressed as

QU GAu O 0fWoy +0yi
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(2.6)

(2.7

(2.8)
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where stiffness coefficients A,J, B,J,D ( j=12, 6) and A1J ( =4, 5) are in-plane, bending-stretching

coupling, bending, and thickness shear stiffnesses, respectively and are defined interms of Q; as

/2 T z ho B .
(AJ ) |J ) ) Oh/Z (Q” Q” ?Zh z Q” )b/(l Z,Z )dZ (|, ] = 1, 2, 4, 5, 6) (29)
where
Qﬂ:Q?z:i, le—i, Qn=0QR=0Q% = Em for metals,
1- n? 1- n? 2(1+n)
(o3 (o3 EC CcC nEC [ CcC [ EC H
= =, = ) = = = for ceramic.
Qll QZZ 1- n2 QlZ 1- n2 Q44 Q55 Q66 2(1+n)

Equation (2.9) is further simplified and the expressi ons for plate stiffnesses may be written as

Aj = (Qu Qff )aen%ngr Qi'h (2.102)
2
- (Q., Q' )T o n+nlh )n+2) g (2.10b)
2+n+n?hd
= (Qu QIJ )T 4(n(+ 1)81 +n2))(n " 3)% Q,J 2 (2.10c)

The governing equations of motion are derived using Hamilton's principle and are expressed in a
non-dimensional form as

(L, +Ly+L.)d+q=L.d (2.11)
where
12 12 12 1 1
La = LalW+La2V+La3ﬂX_ﬂy+La4ﬁ+|-a5_+|—a6’
12 12 12
Lp =Ly —— 4L, 4L,
b bl TIXZ b2 ﬂyz b3 ﬂXﬂy
12 12 12
L=l +L ., 1+
c cl ﬂXZ c2 ‘I]yz c3 ‘I]x‘l]y
1-[2
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d:[u V W Qy qy]T,
q=[00q, 00"
Thematrices Ly ~Lgs, Ly ~ Lps, L ~ Leg @d Ly aregiveninthe Appendix.

2.3. Boundary conditions

The boundary conditions along with the governing equations are obtained and either displacement or
traction is prescribed at the boundaries. The following boundary conditions are considered for clamped (C)
and simply supported (S) boundary conditions at the edges of the plate.

Clamped (C): U =0, nyg=0, wy=0, q,=0, ¢qy,=0 ataltheedges
Simply Supported (S): U =0, ng=0, w,=0, M,=0, q,=0 at X=ta/2
U =0, ng=0, wy=0, gq,=0, M, =0 & y=+b/2

3. Analytical methodology of solution

The nonlinear analysis of isotropic, orthotropic and laminated plates has been carried out analytically
by many investigators (Chia, 1988). In most of the studies, Fourier series is used and Levy-type solution is
obtai ned. In the present paper, finite double Chebyshev seriesis employed for the sol ution, which can aso be
used for solving plates with non-Levy type boundary conditions. The Chebyshev polynomias have been
used for solving the boundary value problems and some of them are due to Evans and Murphy (1981), Nath
and Shukla (2001), Lin and Jen (2003), and Shukla et al. (2004).

The displacement functions and the loading is approxi mated in space domain by finite degree double
Chebyshev polynomials (Fox and Parker, 1968) as

Qoz

dox: T, (X)Tj (y) (3.1

g
X(X’ y):a ij i

=0 j=0

where
dgg =0.25,

dio = dOj :0.5,
d” :1, |,J 10.
The spatial derivative of the function x(x, y) is expressed as

M- N s
rs —
Xw=a
i=0 j=0

di X (X)T; (y) (3.2

Qo
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wherer and s arethe order of derivatives with respect to x and y, respectively, and the function x(x, y) isin

the range of - 1ExX£1 and - 1£ y£1. The derivative function x{js is evaluated, using the recurrence
relations given as (Fox and Parker, 1968)

X{E 1 = X[ + 2,
(3.3)
X{Fj.1) = X(fa0) + 2.

The nonlinear terms which are the product of the displacement functions or their derivatives in the
governing Eq.(2.11) are predicted at every step of marching variable (load) using quadratic extrapolation
technique and added to the load vector. A typical nonlinear function z at step J is expressed as

eMr U epNss u
z;=éa a dxiT(T;(v)a “eq a dpT (T (y)a (3.4)
gi=o j=0 H, &=0j=0 o,
where
b )y = Al ), + Al ), + Aslig), e (3.5)

During initid steps of marching variables, the coefficients A, A,and A; of the quadratic
extrapol ation scheme of linearization takes the following va ues

1,0,0(3=1); 2-10(3=2); 3-31(333).

The product of two Chebyshev polynomiasis expressed as

T ()T T () = 2 T () + Tk T )+ -
Tk ()T em (¥) + Tiea ()T m(y)] :

For temporal discretization of the di splacement terms, appearing in the governing equations, implicit
Houbolt time-marching scheme (Houbolt, 1950) is used. The acceleration terms Uy, Vi, Wy, Oy and

dytt 1N the governing equations are evaluated at each time step and added to the load vector. At any time
step J, the generd accel eration (x’tt )J is evaluated as

(X,tt )J =(byx) +byX 5.1 +baXy 5 +byX g +b5)/(Dt2)- 3.7)
The Houbolt accel eration coefficients for step function load is given as
b,=6, b,=0, by=0, b,=0, b;=-2Q'Dt? for J=1,

b,=2, b,=-4, by=0, b,=0, bg=-Q'Dt? for J=2,
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where Q" isthe non-dimensional uniform step load and t isthe non-dimensional time.

The procedures described above are used for gpatid and tempord discretizetion and linegrizetion of the terms
gopearing in the governing nonlinear coupled partid differentid equations. The governing nonlinear differential
eguetions are linearized and discretized in space and time domain and after coll ocating the zeroes of the Chebyshev
polynomias reduced to asat of Smultaneous linear d gebraic equitions, which are expressed as

M-2N-2

N-
aa fl( Uij» Nij » Ij’qXIj’qylj’Qlj) () J(y):o, (3.89)
i=0 j=0
MO-ZNO-Z
aa fZ(qu’ ni;, Ij’qXIj’qylj’Qlj) () J(y):o, (3.8b)
i=0 j=0
MO-ZNO-Z
a a f3(ulj’ Ij’ Ij’qXIj’quj’Qlj) () J(y):o, (3.80)
i=0 j=0
M°-2N°-2
& A fuluyny. w00y, T (T (v) =0, (380)
i=0 j=0
M°-2N°-2
& & fslup.ny wy, ay; Ay, O JT (T, () =0 (389
i=0 j=0

where 6”- are the Chebyshev coefficients of the modified load vector Q*, including the external load,
nonlinear terms, and inertiaterms.

From Egs (3.8a) to (3.8e), total 5(M - 1)(N - 1) algebraic equations are generated. Similarly, the
boundary conditions are discretized and each clamped edge (C) generates 5M+5 or 5N+5 algebraic

equations and each simply supported edge (S) generates 5M+4 or 5N+4 algebraic equations. So, in case of
an FGM plate with al edges clamped (CCCC), the tota number of linear agebraic equations become

5(M +1)(N +1)+20 which are more than the totd number of unknown coefficents 5(M +1)(N +1).

Similar is the case for other boundary conditions such as three edges clamped and one simply supported
(CCCS), two opposite edges clamped and two simply supported (CCSS), and two adjacent edges clamped
and two smply supported (CSCS). Finally, the discretized linear simultaneous agebraic equations are
written in the matrix form as

Ad=Q" (3.9)

where A is the coeffident metrix, obtained using the spatid and tempord disordizaion, d is the vedtor containing the
unknown coeffidents d;; of thedisplacementsu, n, w, g, and q,,, and Q" isthemodified load vectar consisting of the

goplied loading, nonlinear temsand inertiaterms. Thevector Q” ismodified a every iteration across each step.
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In the present formulation, the tota number of equations becomes greater than the unknown
coefficients and hence in order to have a unique and compatible solution, the multiple regression analysis
(Shukla et al., 2004) based on the least-square error normsis used, which converts Eq.(3.9) inthe following form

d=(aTA]'ATqQ". (3.10)

Solving Eq.(3.10), the unknown coefficients dj; of the displacements are obtained and using
Eq.(3.1), the vaue of the displacement at any point in mid-plane of the plateis obtai ned.

4. Numerical results and discussions

The nonlinear static and dynamic analysis of the functionadly graded materias plate consisting of
aluminum and aluminais carried out by utilizing double Chebyshev polynomials. The non-dimensiona load

and time are incremented in small steps of DQ =1 and Dt =0.1, respectively, using an iterative
incremental approach. A relative convergence of 0.1% of each displacement coefficients d; at every

iteration across each load or time step is adopted. Nine terms expansion of the variables (displacement and
load) in Chebyshev series are used for spatia discretization. To ensure the validity of the present solution
methodol ogy, the nonlinear static results for transverse central displacement, moment at center and in-plane
force at center for clamped isotropic square plate (a/ h= 10) under uniform lateral pressure are obta ned and

compared with the results due to Turvey and Osman (1990). The comparisons for nondimensional central

: @ M, a0 @ N,a?0

displacement WC(: Wo/h), central moment ngz ’;14 * and in-plane force ngz Exh3 T at center are
[4] [4]

shown in Figs 2-4, respectivey. It can be seen that thereis good agreement among the results and differences

are within less than 3%, which may be attributed to different solution methodology.
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Fig.2. Comparison of the nonlinear static transverse central deflection w,, for a damped isotropic plate.
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Fig.3. Comparison of moment M X at center for a clamped isotropic plate.
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Fig.4. Comparison of in-plane force N; at the center for a clamped isotropic plate.
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The numerical results showing the effects of compaosition of the aluminum and aluminain the plate,
plate span to thickness ratio a/h and different boundary conditions on the transverse central displacement
are presented. Following material properties aretaken in the analysis.

Aluminum: E,, =70GPa, n=0.3,and r ,, = 2707kg/m3 , Alumina: E. =380GPa, n=0.3, and
r . =3800kg/m°.
The non-dimensionalized parameters used are central deflection w, =w,/h, transverse load
4 2

Q =qz—i4, moment at center M; = Ma and other non-dimensional parameters are shown in the
En 11
Appendix.

The effect of volume fraction exponent n for aluminum and alumina in the plate on the static
nonlinear transverse central displacement response of the square moderatdy thick (a/ h= 10) FGM plate
with al edges clamped are shown in Fig.5. It is observed that the central displacement is lowest for the

alumina plate and highest for aluminum one. It is obvious as the stiffness of aumina is higher than
aluminum. With an increase in the value of volume fraction n, the central displacement increases. Figure 6

depicts the effect of the volume fraction n on the central displacement response for athin (a/ h= 100) CCcCcC
plate. The effects are almost similar as obtained in for a moderatdy thick plate, which are shown in Fig.5.
The variation of the transverse central displacement with volume fraction exponent n is shown in Fig.7 for a
moderately thick (a/ h= 10) clamped plate. It can be observed that the curve between central displacement
and volume fraction exponent is almost bilinear. It shows that the effect of volume fraction exponent on
transverse central displacement is more pronounced up to n=2 and theresfter its effect diminishes, which
can be used as one of the guiding factor in the design of FGM plates.

1,6

14 ---a--- n=0
—o—n=0.5
—2s—n=1.0

1,2 | xenel5 B
—*%— n=2 ///’//
------- n=5 /,—// .

1 F  ----n=10 7 -

0,8

Wc

0,4

0,2

0 50 100 150 200

Fig.5. Effect of volume fraction exponent n on static transverse deflection of the clamped FGM plate
(a/h =10) under uniform lateral loading.
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Fig.6. Effect of volume fraction exponent n on static transverse deflection of the clamped FGM plate
(a/h =10) under uniform lateral loading.
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Fig.7. Variation of central deflection w, with volume fraction exponent n for the clamped FGM plate

(a/h=10).
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The effects of boundary conditions on the central transverse displacement for a moderately
thick (a/h = 20) FGM square plate with n equal to 0 and 5, are shown in Fig.8. The figure shows that
displacement is lowest for a plate with all edges clamped (CCCC) when the plate is made of alumina
or when it is the composition of alumina and auminum both with volume fraction exponent equal to
5. However, in case of plates with two opposite edges clamped and two simply supported (CCSS) and
two adjacent edges clamped and two simply supported (CSCS), the deflection for the CSCS plate is
slightly higher than the CCSS plate when n=0 i.e, for the plate made of Alumina only. But, for the
FGM plate with n =5, the displacement in both the cases of boundary conditions CCSS and CSCS is
almost same. It is slightly less in case of the CCSS plate when the non-dimensional lateral pressure

Q" isless than 120 but it becomes slightly higher for the CCSS plate when Q" is greater than 160.

For all the boundary conditions, the central displacement increases with an increase in the volume
fraction exponent n.

1,2
---—. CCCC, n=0
—o— CCCC,n=5 ///’
1r —as—CCCSn=0 e
_ o
-~ _-cccsnss . 7
—%— CCSS,n=0 T ?
T CCSS,n=5 T
08 —+—CSCS,n=0 e 7
——CSCS,n=5 AT s
0,6
o
=
0,4
0,2
O 1

Fig.8. Effect of boundary conditions on the transverse central deflection w, of the damped FGM plate
(a/h = 20) under uniform lateral loading.

Figure 9 depicts the effect of volume fraction exponent n on the linear and nonlinear
dynamic displacement responses of the moderately thick (a/h:ZO) FGM plate with clamped

boundary conditions on all the edges under uniform step loading. The maximum amplitude of
motion is higher in case of linear response than nonlinear response for all the values of n and it
increases with n for linear as well as nonlinear responses. The difference in the maximum
amplitude of motion between linear and nonlinear responses increases with an increase in n value
and the difference is highest when the plate is fully made of aluminum and lowest when the plate
is fully made of alumina.
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—=o— Nonlinear,n=2
—=a— Nonlinear,n=5

— — — — Nonlinear,aluminum

. 15

W,

40 50 60 70

Fig.9. Effect of volume fraction exponent n on dynamic transverse displacement response of the clamped
FGM plate (a/h = 20) under uniform step loading (Q* = 100).

The effect of plate span to thickness ratio a/h on the nonlinear dynamic central

displacement response of the clamped FGM plate for volume fraction exponent n equal to 0 and 2
is shown in Fig.10. It is observed that for both the values of n the maximum amplitude of the
motion decreases slightly with an increase in a/h, but decrease in the frequency of motion with

an increase in a/h values is significant. The effect of volume fraction exponent n on the central
moment M; of the clamped FGM plate (a/h: 20) under uniform step loading is shown in Fig.11.
It is observed that the moment M; remains almost positive for n=0, 1 and 2 and its value is

almost same for n=1 and 2, but for fully aluminum plate the val ue of M; changes its nature and

it is higher than any other value of the volume fraction exponent n, indicating the greater
influence of n which changes the stiffness of the FGM plate.
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Fig.10. Effect of plate span to thicknessratio a/h on nonlinear dynamic transverse displacement response of
the clamped FGM plate under uniform step loading (Q* = 100).
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Fig.11. Variation of moment M; at the center of the clamped FGM plate (a/ h= 20) under uniform step
loading (Q* = 100) for different values of n.
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5. Concluding remarks

The nonlinear static and dynamic responses of the functionally graded materials plate with non-
classical boundary conditions are obtained, explicitly. The effect of volume fraction exponent on the static
and dynamic transverse displacement responses is obtained, which may be useful for determining the volume
fraction of the materials for a desired response. Analysis results indicate that the volume fraction exponent
has a significant effect on the response of the plate and with an increase in the value of the volume fraction
exponent up to two, the transverse deflection increases significantly in both the static and dynamic loading
cases, indicating that the plate stiffness reduces with an increasein n. The effect of volume fraction exponent
is similar for thin and moderately thick plates. The present solution methodology can be extended for
obtaining the buckling and post-buckling response of the FGM plates under therma and
thermomechani cal 1oading, which may be helpful for optimal design of the FGM plates under different
loading conditions.
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Nomenclature

a, b, h —platedimensions
Aj,B;j, D —in-plane, coupling, bending stiffnesses of the plate, respectively
CCCC -all edges clamped
CCCS - three edges clamped and one edge simply supported
CCSS - two opposite edges clamped and two simply supported
CSCS —two adjacent edges clamped and two simply supported
E., E, —modulus of elasticity of ceramic and metd, respectively

n —volume fraction exponent
N",M",Q" —nondimensional in-plane force, moment, and transverse load a centre
U, V, W —displacement of plates at any point in x, y, z directions, respectively
Ug, Vo, Wy — displacement of plates at mid planein x, y, z directions, respectively
w, —nhon dimensional central displacement
re,f'm —mMassdensity of ceramic and metal, respectively
n —Poisson’sratio
dx. 9y —slopesinxz, yz planes, respectively
t —non-dimensional time
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APPENDIX

The matrices defined in the governing Eq.(2.11) are defined as
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whereP, Rand | arethe normal, coupled normal rotary and rotary inertia coefficients and defined as
_ 2 2
(P.R1)= Oy (z)(l, 2,2 )dz. (A8)
The non-dimensional parameters appearing in the foregoing equations are defined as
I :E’ X:%’ y:ﬁ’ u:u_o’ V:V_O’ W:WO’
b a b h h h
x . N,a . Nya . 2
X:Nxa’ Ny:—y, ny:i, MX:M, (A9)
Aph Agh Assh Dysh
. _Ma? . M@ _[an,
y D22h ’ D66h ’ Pa2

Rece ved: November 4, 2004
Revised: February 25, 2005



