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An explicit solution for the nonlinear static and dynamic responses of the functionally graded materials 
rectangular plate is obtained. The volume fraction of the material constituents is assumed to follow a simple 
power law distribution. The formulation is based on the first-order shear deformation theory and von-Karman 
nonlinear kinematics. The solution methodology utilizes the quadratic extrapolation technique for linearization, 
finite double Chebyshev series for spatial discretization of the variables and Houbolt time marching scheme for 
temporal discretization. Numerical results show the effect of volume fraction exponent of the constituent 
materials on the nonlinear static and dynamic responses of the plate with different boundary conditions and plate 
span to thickness ratio. Analysis results indicate that the effect of the volume fraction exponent n up to two on the 
displacement of the plate is more significant. 
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1. Introduction 
 
 Thin and moderately thick plates/panels are one of the major load bearing structural elements in high 
performance engineering structures. Fiber composite laminated plates are widely used in structures such as 
space structures, nuclear reactor vessels, automobiles, turbines etc. They are usually subjected to severe non-
uniform thermomechanical loading conditions during their service life. The failures of these components are 
mainly due to the large amplitude of vibrations under transient loading, buckling or excessive stresses and 
deformations induced by thermo-mechanical loadings. The fiber composite laminated plates/panels show 
destabilizing effect at elevated temperature as the material properties such as the modulus of elasticity 
reduces considerably at higher temperature. Also the exact analyses of laminated fiber composites are 
difficult due to the presence of a large number of interfaces between the layers. Recent studies on a new 
performance material known as functionally graded materials (FGM’s) reveal that these materials are 
suitable for structures exposed to non-uniform service conditions and under high thermal environment. The 
functionally graded materials are microscopically heterogeneous and made from isotropic materials such as 
metals and ceramics. In functionally graded materials, the material properties are graded continuously and 
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vary smoothly from one surface to another and thus the disadvantage of interfaces in the laminated 
composites are eliminated.   
 The nonlinear static and dynamic analyses of isotropic and fiber reinforced composite laminated 
plates have been carried out by many investigators using an analytical approach, mainly employing 
generalized Fourier series and finite element based numerical tools. A detailed comprehensive review of the 
problems related to the geometric nonlinear analysis of composite plates and nonlinear vibration of plates 
using analytical and finite elements methods are presented by Chia (1988) and Sathyamoorthy (1987), 
respectively. Tauchert (1991) presented a classical review of the flexure, buckling and vibration of plates due 
to thermal loading. It can be seen from the literature that considerable efforts are made for the analysis of the 
composite laminated plates/panels. 
 In recent years the functionally graded materials have found increased applications in advanced 
engineering structures which are exposed to high temperature environment, since they were first reported in 
1984 in Japan (Koizumi, 1993). The analyses of the functionally graded materials plates/panels have 
received considerable attention of the researchers in recent past. Finot and Suresh (1996) presented a closed 
form solution based on the classical Kirchhoff’s theory of thin plates for the analysis of multilayered and 
functionally graded material plates, subjected to thermal loading. The dynamic thermoelastic response of the 
functionally graded cylinders and plates are obtained by Reddy and Chin (1998). Praveen and Reddy (1998) 
obtained the nonlinear transient thermoelastic response of the functionally graded ceramic metal plates using 
a plate finite element method, employing transverse shear strain, rotary inertia and von-Karman nonlinearity. 
Loy et al. (1999) presented a free vibration analysis of simply supported FGM thin cylindrical shells. 
Pradhan et al. (2000) presented the solution for free vibration of FGM cylindrical thin shells for different 
boundary conditions. Reddy (2000) obtained the Navier’s solution of rectangular FGM plate using finite 
element based models and incorporating third order shear deformation theory and von-Karman type 
nonlinearity. Zhong and Shang (2003) obtained three-dimensional analytical solutions for a simply supported 
functionally gradient piezoelectric plate. Employing classical nonlinear von-Karman plate theory, Ma and 
Wang (2003) investigated axisymmetric large deflection analysis of a functionally graded circular plate. Vel 
and Batra (2002, 2003) presented an analytical solution for the three dimensional analysis of simply 
supported functionally graded rectangular plate subjected to thermal and mechanical loadings. Yang and 
Shen (2003) presented a semi-numerical approach for the nonlinear bending analysis of the shear deformable 
functionally graded rectangular plate subjected to thermo-mechanical loading. From the available literature, 
it is evident that less attention has been paid to the nonlinear analysis of the functionally graded plates and 
analytical solutions to the nonlinear static and dynamic responses of the FGM plates are a few. In order to 
have the reliable service and lifetime prediction of the FGM plates, it is necessary to clearly examine the 
nonlinear response of the FGM plates under different loading conditions, so that the influence of the graded 
material properties can be understood thoroughly. Hence, there is a need to obtain the nonlinear response of 
the FGM plates, analytically, in order to have a better understanding of their behavior.  
 In the present paper, an attempt is made to obtain the analytical-numerical type solution for the 
nonlinear static and dynamic responses of the moderately thick functionally graded materials plates. The 
present methodology of the solution is based on the fast converging finite double Chebyshev series, which 
can be used for plates with different boundary conditions. The mathematical formulation is based on first-
order shear deformation theory and von-Karman nonlinear kinematics. The properties of the plate are 
considered to vary across the thickness of the plate according to power law. The effects of volume fraction of 
the material constituents on the nonlinear static and dynamic displacement responses of the FGM plate with 
different combinations of the boundary conditions and plate span to thickness ratio are investigated. 
 
2. Problem formulation  
 
2.1. Functionally graded material plates 
 
 Functionally graded materials are composite and microscopically inhomogeneous with mechanical 
and thermal properties varying smoothly and continuously from one surface to the other. These materials are 
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made from a mixture of ceramics and metals or combination of different metals by gradually varying the 
volume fraction of the constituent metals. The properties of the plate are assumed to vary through the 
thickness of the plate. A simple rule of a mixture based on power law is used to obtain the effective 
properties of an FGM plate of thickness h shown in Fig.1. The effective properties of the FGM plate can be 
written as (Praveen and Reddy, 1998) 
 

  ( ) ( )
n

mcm h2
hz2EEEzE 
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
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−+= ,  (2.1) 
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where ccE ρ,  and mmE ρ,  are the corresponding properties of the ceramic and metals, z is the thickness 
coordinate ( )2hz2h ≤≤− , and n is the volume fraction exponent which takes values greater than or equal 
to zero. The value of n=1, indicates the linear variation of the composition of the materials through the 
thickness and n=0 represents a fully ceramic plate. The Poisson’s ratio is assumed to be constant for both the materials. 
 
  ( ) ν=ν z .  (2.3) 
 

 
 

Fig.1. Geometry of the FGM plate. 
 
2.2. Governing equations of motion 
 
 A rectangular plate of dimensions a, b, and h shown in Fig.1, is considered for the analysis. Based on 
the first-order shear deformation theory, the displacement field at a point in the plate is expressed as 
 
  ( ) ( ) ( )tyxztyxutzyxU x0 ,,,,,,, θ+= , 
 
  ( ) ( ) ( )tyxztyxvtzyxV y0 ,,,,,,, θ+= ,   (2.4) 
 
  ( ) ( )tyxwtzyxW 0 ,,,,, =  
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where 00u ν,  and 0w  are the displacements at a point on the mid-plane of the plate in x, y and z directions, 
respectively. xθ  and yθ  are the rotations of yz and xz planes of the plate, respectively. 
 Employing the von-Karman nonlinearity, which takes into account moderately large deformations 
and small strains, the strain-displacement relations are expressed as 
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 The constitutive equations for the FGM plate with plane stress condition and transverse shear is given by 
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 The in-plane force and moment resultants of the plate are expressed as 
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 The transverse shear forces are expressed as 
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where stiffness coefficients ijijij DBA ,, ( )621ji ,,, =  and ijA ( )54ji ,, =  are in-plane, bending-stretching 
coupling, bending, and thickness shear stiffnesses, respectively and are defined in terms of ijQ  as  
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 Equation (2.9) is further simplified and the expressions for plate stiffnesses may be written as 
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 The governing equations of motion are derived using Hamilton’s principle and are expressed in a 
non-dimensional form as  
 
  ( ) dLqdLLL τ=+++ cba   (2.11) 
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  [ ]Tyxwvu θθ=d , 
 
  [ ]Tz 00q00=q . 
 
The matrices 6a1a ~ LL , 3b1b ~ LL , 3c1c ~ LL  and 1τL  are given in the Appendix. 
 
2.3. Boundary conditions 
 
 The boundary conditions along with the governing equations are obtained and either displacement or 
traction is prescribed at the boundaries. The following boundary conditions are considered for clamped (C) 
and simply supported (S) boundary conditions at the edges of the plate. 
 
Clamped (C):                       0u0 = ,    00 =ν ,    0w0 = ,    0x =θ ,     0y =θ      at all the edges 

Simply Supported (S):           0u0 = ,    00 =ν ,    0w0 = ,    0M x = ,   0y =θ      at      2ax ±=  
                       0u0 = ,    00 =ν ,    0w0 = ,    0x =θ ,     0M y =     at     2by ±=  

 
3. Analytical methodology of solution 
 
 The nonlinear analysis of isotropic, orthotropic and laminated plates has been carried out analytically 
by many investigators (Chia, 1988). In most of the studies, Fourier series is used and Levy-type solution is 
obtained. In the present paper, finite double Chebyshev series is employed for the solution, which can also be 
used for solving plates with non-Levy type boundary conditions. The Chebyshev polynomials have been 
used for solving the boundary value problems and some of them are due to Evans and Murphy (1981), Nath 
and Shukla (2001), Lin and Jen (2003), and Shukla et al. (2004). 
 The displacement functions and the loading is approximated in space domain by finite degree double 
Chebyshev polynomials (Fox and Parker, 1968) as 
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where r and s are the order of derivatives with respect to x and y, respectively, and the function ( )yx,ξ  is in 

the range of 1x1 ≤≤−  and 1y1 ≤≤− . The derivative function rs
ijξ  is evaluated, using the recurrence 

relations given as (Fox and Parker, 1968) 
 
  ( ) ( )
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   (3.3) 
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 The nonlinear terms which are the product of the displacement functions or their derivatives in the 
governing Eq.(2.11) are predicted at every step of marching variable (load) using quadratic extrapolation 
technique and added to the load vector. A typical nonlinear function ζ  at step J is expressed as 
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where 
 
  ( ) ( ) ( ) ( )

3Jij32Jij21Jij1Jij AAA
−−−
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 During initial steps of marching variables, the coefficients 1A , 2A and 3A  of the quadratic 
extrapolation scheme of linearization takes the following values 
 
  ( )1J001 =,, ;     ( )2J012 =− ,, ;     ( )3J133 ≥− ,, . 
 
 The product of two Chebyshev polynomials is expressed as  
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 For temporal discretization of the displacement terms, appearing in the governing equations, implicit 
Houbolt time-marching scheme (Houbolt, 1950) is used. The acceleration terms ττ,u , ττ,v , ττ,w , ττθ ,x  and 

ττθ ,y  in the governing equations are evaluated at each time step and added to the load vector. At any time 
step J, the general acceleration ( )

Jττξ,  is evaluated as 
 

  ( ) ( ) ( )2
53J42J31J2J1J

τ∆β+ξβ+ξβ+ξβ+ξβ=ξ −−−ττ, .  (3.7) 
 
 The Houbolt acceleration coefficients for step function load is given as 
 

  61 =β ,     02 =β ,       03 =β ,     04 =β ,      2
5 Q2 τ∆−=β ∗     for     1J = , 

 

  21 =β ,     42 −=β ,     03 =β ,     04 =β ,      2
5 Q τ∆−=β ∗      for     2J = , 
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  21 =β ,     52 −=β ,     43 =β ,     04 =β ,      05 =β                  for     3J = , 
 
  21 =β ,     52 −=β ,     43 =β ,     14 −=β ,     05 =β                 for     3J ≥ , 
 

where ∗Q  is the non-dimensional uniform step load and τ  is the non-dimensional time. 
 The procedures described above are used for spatial and temporal discretization and linearization of the terms 
appearing in the governing nonlinear coupled partial differential equations. The governing nonlinear differential 
equations are linearized and discretized in space and time domain and after collocating the zeroes of the Chebyshev 
polynomials reduced to a set of simultaneous linear algebraic equations, which are expressed as 
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where ijQ  are the Chebyshev coefficients of the modified load vector ∗Q , including the external load, 
nonlinear terms, and inertia terms. 
 From Eqs (3.8a) to (3.8e), total ( )( )1N1M5 −−  algebraic equations are generated. Similarly, the 
boundary conditions are discretized and each clamped edge (C) generates 5M+5 or 5N+5 algebraic 
equations and each simply supported edge (S) generates 5M+4 or 5N+4 algebraic equations. So, in case of 
an FGM plate with all edges clamped (CCCC), the total number of linear algebraic equations become 

( )( ) 201N1M5 +++  which are more than the total number of unknown coefficients ( )( )1N1M5 ++ . 
Similar is the case for other boundary conditions such as three edges clamped and one simply supported 
(CCCS), two opposite edges clamped and two simply supported (CCSS), and two adjacent edges clamped 
and two simply supported (CSCS). Finally, the discretized linear simultaneous algebraic equations are 
written in the matrix form as 
 

  ∗= QdA   (3.9) 
 
where A is the coefficient matrix, obtained using the spatial and temporal discretization, d is the vector containing the 
unknown coefficients ijd  of the displacements u, ν , w, xθ  and yθ , and ∗Q  is the modified load vector consisting of the 

applied loading, nonlinear terms and inertia terms. The vector ∗Q  is modified at every iteration across each step. 
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 In the present formulation, the total number of equations becomes greater than the unknown 
coefficients and hence in order to have a unique and compatible solution, the multiple regression analysis 
(Shukla et al., 2004) based on the least-square error norms is used, which converts Eq.(3.9) in the following form 
 

  ( ) ∗−
= QAAAd T1T .  (3.10) 

 
 Solving Eq.(3.10), the unknown coefficients ijd  of the displacements are obtained and using 
Eq.(3.1), the value of the displacement at any point in mid-plane of the plate is obtained. 
 
4. Numerical results and discussions 
 
 The nonlinear static and dynamic analysis of the functionally graded materials plate consisting of 
aluminum and alumina is carried out by utilizing double Chebyshev polynomials. The non-dimensional load 
and time are incremented in small steps of 1Q =∆ ∗  and 1.0=τ∆ , respectively, using an iterative 
incremental approach. A relative convergence of 0.1% of each displacement coefficients ijd  at every 
iteration across each load or time step is adopted. Nine terms expansion of the variables (displacement and 
load) in Chebyshev series are used for spatial discretization. To ensure the validity of the present solution 
methodology, the nonlinear static results for transverse central displacement, moment at center and in-plane 
force at center for clamped isotropic square plate ( )10ha =  under uniform lateral pressure are obtained and 
compared with the results due to Turvey and Osman (1990). The comparisons for nondimensional central 
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shown in Figs 2-4, respectively. It can be seen that there is good agreement among the results and differences 
are within less than 3%, which may be attributed to different solution methodology. 
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Fig.2. Comparison of the nonlinear static transverse central deflection cw  for a clamped isotropic plate. 
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Fig.3. Comparison of moment ∗
xM  at center for a clamped isotropic plate. 
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Fig.4. Comparison of in-plane force ∗
xN  at the center for a clamped isotropic plate. 
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 The numerical results showing the effects of composition of the aluminum and alumina in the plate, 
plate span to thickness ratio ha  and different boundary conditions on the transverse central displacement 
are presented. Following material properties are taken in the analysis: 
 Aluminum: GPa70Em = , 30.=ν , and 3

m mkg2707=ρ , Alumina: GPa380Ec = , 30.=ν , and 
3

c mkg3800=ρ . 
 The non-dimensionalized parameters used are central deflection hww 0c = , transverse load 

4
m

4
z

hE
aqQ =∗ , moment at center 

hD
aMM

11

2
x

x =∗  and other non-dimensional parameters are shown in the 

Appendix. 
 The effect of volume fraction exponent n for aluminum and alumina in the plate on the static 
nonlinear transverse central displacement response of the square moderately thick ( )10ha =  FGM plate 
with all edges clamped are shown in Fig.5. It is observed that the central displacement is lowest for the 
alumina plate and highest for aluminum one. It is obvious as the stiffness of alumina is higher than 
aluminum. With an increase in the value of volume fraction n, the central displacement increases. Figure 6 
depicts the effect of the volume fraction n on the central displacement response for a thin ( )100ha =  CCCC 
plate. The effects are almost similar as obtained in for a moderately thick plate, which are shown in Fig.5. 
The variation of the transverse central displacement with volume fraction exponent n is shown in Fig.7 for a 
moderately thick ( )10ha =  clamped plate. It can be observed that the curve between central displacement 
and volume fraction exponent is almost bilinear. It shows that the effect of volume fraction exponent on 
transverse central displacement is more pronounced up to 2n =  and thereafter its effect diminishes, which 
can be used as one of the guiding factor in the design of FGM plates. 
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Fig.5. Effect of volume fraction exponent n on static transverse deflection of the clamped FGM plate 
( )10ha =  under uniform lateral loading. 
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Fig.6. Effect of volume fraction exponent n on static transverse deflection of the clamped FGM plate 
( )10ha =  under uniform lateral loading. 
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Fig.7. Variation of central deflection cw  with volume fraction exponent n for the clamped FGM plate 
( )10ha = . 
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 The effects of boundary conditions on the central transverse displacement for a moderately 
thick ( )20ha =  FGM square plate with n equal to 0 and 5, are shown in Fig.8. The figure shows that 
displacement is lowest for a plate with all edges clamped (CCCC) when the plate is made of alumina 
or when it is the composition of alumina and aluminum both with volume fraction exponent equal to 
5. However, in case of plates with two opposite edges clamped and two simply supported (CCSS) and 
two adjacent edges clamped and two simply supported (CSCS), the deflection for the CSCS plate is 
slightly higher than the CCSS plate when 0n =  i.e., for the plate made of Alumina only. But, for the 
FGM plate with 5n = , the displacement in both the cases of boundary conditions CCSS and CSCS is 
almost same. It is slightly less in case of the CCSS plate when the non-dimensional lateral pressure 

∗Q  is less than 120 but it becomes slightly higher for the CCSS plate when ∗Q  is greater than 160. 
For all the boundary conditions, the central displacement increases with an increase in the volume 
fraction exponent n. 
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Fig.8. Effect of boundary conditions on the transverse central deflection cw  of the clamped FGM plate 
( )20ha =  under uniform lateral loading. 

 
 Figure 9 depicts the effect of volume fraction exponent n on the linear and nonlinear 
dynamic displacement responses of the moderately thick ( )20ha =  FGM plate with clamped 
boundary conditions on all the edges under uniform step loading. The maximum amplitude of 
motion is higher in case of linear response than nonlinear response for all the values of n and it 
increases with n for linear as well as nonlinear responses. The difference in the maximum 
amplitude of motion between linear and nonlinear responses increases with an increase in n value 
and the difference is highest when the plate is fully made of aluminum and lowest when the plate 
is fully made of alumina.  
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Fig.9. Effect of volume fraction exponent n on dynamic transverse displacement response of the clamped 
FGM plate ( )20ha =  under uniform step loading ( )100Q =∗ . 

 
 The effect of plate span to thickness ratio ha  on the nonlinear dynamic central 
displacement response of the clamped FGM plate for volume fraction exponent n equal to 0 and 2  
is shown in Fig.10. It is observed that for both the values of n the maximum amplitude of the 
motion decreases slightly with an increase in ha , but decrease in the frequency of motion with 
an increase in ha  values is significant. The effect of volume fraction exponent n on the central 

moment ∗
xM  of the clamped FGM plate ( )20ha =  under uniform step loading is shown in Fig.11. 

It is observed that the moment ∗
xM  remains almost positive for 0n = , 1 and 2 and its value is 

almost same for 1n =  and 2, but for fully aluminum plate the value of ∗
xM  changes its nature and 

it is higher than any other value of the volume fraction exponent n, indicating the greater 
influence of n which changes the stiffness of the FGM plate. 
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Fig.10. Effect of plate span to thickness ratio ha  on nonlinear dynamic transverse displacement response of 

the clamped FGM plate under uniform step loading ( )100Q =∗ . 
 

-15

-10

-5

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70
τ

M
x*

n=0
n=1
n=2
aluminum

 
 

Fig.11. Variation of moment ∗
xM  at the center of the clamped FGM plate ( )20ha =  under uniform step 

loading ( )100Q =∗  for different values of n. 
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5. Concluding remarks 
 
 The nonlinear static and dynamic responses of the functionally graded materials plate with non-
classical boundary conditions are obtained, explicitly. The effect of volume fraction exponent on the static 
and dynamic transverse displacement responses is obtained, which may be useful for determining the volume 
fraction of the materials for a desired response. Analysis results indicate that the volume fraction exponent 
has a significant effect on the response of the plate and with an increase in the value of the volume fraction 
exponent up to two, the transverse deflection increases significantly in both the static and dynamic loading 
cases, indicating that the plate stiffness reduces with an increase in n. The effect of volume fraction exponent 
is similar for thin and moderately thick plates. The present solution methodology can be extended for 
obtaining the buckling and post-buckling response of the FGM plates under thermal and 
thermomechanical loading, which may be helpful for optimal design of the FGM plates under different 
loading conditions. 
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Nomenclature 
 
 a, b, h – plate dimensions 
 ijijij DBA ,,  – in-plane, coupling, bending stiffnesses of  the plate, respectively 
 CCCC – all edges clamped 
 CCCS – three edges clamped and one edge simply supported 
 CCSS – two opposite edges clamped and two simply supported 
 CSCS – two adjacent edges clamped and two simply supported 
 mc EE ,  – modulus of elasticity of ceramic and metal, respectively 
 n – volume fraction exponent 
 ∗∗∗ QMN ,,  – non dimensional in-plane force, moment, and transverse load at centre 
 U, V, W – displacement of plates at any point in x, y, z directions, respectively 
 000 wvu ,,  – displacement of plates at mid plane in x, y, z directions, respectively 
 cw  – non dimensional central displacement 
 mc ρρ ,  – mass density of ceramic and metal, respectively 
 ν  – Poisson’s ratio 
 yx θθ ,  – slopes in xz, yz planes, respectively 
 τ  – non-dimensional time 
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APPENDIX  
 
 The matrices defined in the governing Eq.(2.11) are defined as 
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1bL , 2bL , 3bL , 1cL , 2cL  and 3cL  are 55 ×  matrices and all elements are zero except 
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where P, R and I  are the normal, coupled normal rotary and rotary inertia coefficients and defined as 
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 The non-dimensional parameters appearing in the foregoing equations are defined as 
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