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Brief note

HEAT TRANSFER IN A TURBULENT CHANNEL FLOW WITH A
PERMEABLE WALL
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A problem of turbulent flow ina channd with a permeable wall recently considered in Hahn and Choi (2002)
is extended to include heat transfer. A k- e model is utilized to investigate this problem numerically. The
modeling is based on the assumption that the flow in the channel is turbulent while in the porous block the flow
remains laminar. The wall functions approach is utilized to determine the boundary conditions for the k and €
equations. The dependence of the Nusselt number on the Darcy and Reynolds numbers is investigated.

1. Introduction

Fluid flow in a channel bounded on one side by a solid wall and on the other side by a porous block
has been recently investigated by Hahn and Choi (2002) who were interested in extending the classical
problem of Beavers and Joseph (1967) to the case when the flow in the channd is turbulent. The purpose of
this paper is to extend this problem to include heat transfer due to turbulent forced convection flow in the
channdl.

Figure 1 displays a schematic diagram of the problem investigated in this paper. A paralld-plate
channel of thickness H is bounded on the top by a solid wal and on the bottom by a porous block whose
thickness is the same as that of the channel. The flow is driven by a constant pressure gradient. Two cases of
the thermal boundary condition at the upper wall are considered: the upper wal is assumed to be ether
subjected to a constant heat flux or isothermal (with atemperature T,,). The lower wall (the one that bounds

the porous block) is assumed adiabatic.

g'=q, =const
or T=T,, =const

adiabatic

Fig.1. Schematic diagram of the problem.
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Although many recent papers considered the modeling of turbulence in porous media (see recent
review chapter by Lage et al. (2002)), herein the assumption utilized in Hahn and Choi (2002), that the flow
in the porous block remains laminar, was adopted. As discussed in Zhu and Kuznetsov (2005), this
assumption will probably fail if the medium is hyperporous, but should hold for most practical porous
media

2. Mathematical modd

AsFig.1 shows, the flow domain can be divided into two regions, the clear fluid region (the channd)
where the flow is assumed turbulent, and the porous block, where the flow is assumed laminar. In the
turbulent (clear fluid) region, a k- € modd is utilized.

3. Momentum equation for the clear fluid region and the k - e model formulation

For a hydrodynamically fully developed flow, the velocity distribution in the clear fluid region can
be computed from the foll owing equation

1 d édu®™ ,du*u
+ B + ¥

0= e— U
2HY  dz' gdz* m dz' g

(3.1)

where u” isthe dimensionless vel odity, u/u, ; uisthelongitudina velocity; u, isthewall friction velocity,

|tw|/r ; t. istheshear stress a the upper wall (at z=2H ); H™ isthe dimensionless thickness of the gap
between the wall and the porous interface, u,H /v; H is the thickness of the gap between the wall and the
porous interface; v is the fluid kinematic viscosity; z* isthe dimensionless vertical coordinate, U z/V; x*
is the dimensionless horizontal coordinate, u, x/v; mF is the dimensionless eddy viscosity, m; /m; i isthe

fluid dynamic viscosity; and my is the eddy viscosity. It should be noted that H ™ can also be interpreted as

a Reynolds number based on the channel width and the friction velocity at the upper wall.
At the upper wall, Eq.(3.1) must satisfy the foll owing no-slip boundary condition

ut=0 a z"=2H". (3.2)

In the clear fluid region, the following k- € modd is utilized. For the fully developed flow, the
turbulence kinetic energy equation can be presented as

ﬁﬂu 'ﬂ k* U
z 1+ =0 (3.39)
gﬂ : 3(  f
where
Y=k/u?  and e =evq /up. (3.3b)\

The dissipation rate equation for the fully devel oped flow is
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The dimensionless eddy viscosity can be found from the following equation

Kt f
.
my :Cm e+ . (35)

The closure coefficients for the k- e modd are
Cy =144, Cep =192, S, =13 and C,=0.09. (3.6)

Boundary conditions for the k and € eguations are found from the wall functions (Henkse and
Hoogendoorn, 1989). It should be noted that wall functions are traditionally used to determine boundary
conditions at the solid wall, and the utilization of wall functions to determine boundary conditions at the

interface is an additional approximation. For k™, the following boundary condition is imposed a the
interface and at the wall, respectivey

kf=— a 2z'=H" ad z'=2H". (3.7)

L

For e, the following boundary condition is imposed at the first inner computational grid points
from theinterface and the wall (these grid points are located inside the clear fluid region)

e = 5 411Dz+ a z'=H"+Dz"* and z"=2H"-Dz" (3.8)

where Dz" is the mesh size in the z-direction (the grid points where this condition is imposed must be
positioned outside the lami nar sublayer, meaning that their distance from the interface and wall, respectively,
must belarger than 11.5 in thewall coordinates).

In order to check whether the flow in the clear fluid gap is indeed turbulent, the Reynolds number
based on the width of the clear fluid domain, H, and the mean velocity in this region, (Um)clearﬂ , IS

caculated as

Regear i = (U m)clear aH/ng = (Ur;)dear aHY (3.9)
Where( )dear ¢ Isthedimensionless mean velocity in the clear fluid region, (Um)clear ﬂ/ut
1 2H7
+ _ N gt
(Um)clear n=gs O dz”. (3.10)
H+

For the flow in a channel, the critical Reynolds number is 4° 10%.
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4. Momentum equation for the porousregion

The Brinkman-Forchhei mer-extended Darcy equation (1999) is utilized to model the laminar flow in
the porous region. Utilizing the dimensionless variables defined above, this equation can be presented
as

odaut * 2
e e g =0 @)
2H m fa(dz+) Da(H+) Da'?H

where c¢ is the Forchhemer coefficient; Da is the Darcy number, K/H 2 ; K is the permeability of the
porous medium; and my; isthe effective viscosity in the porous region.

To match the laminar flow ve ocity in the porous region with the turbulent flow ve ocity in the clear
fluid region the following matching conditions are utilized at the porous/fluid interface

&m fz*

_fu*

+ + +
=u =u; and
Z'=H*-0 z"=H"+0

Z'=H*+0

+
zt=H"-0 T[Z
4.2
a z"=H".

The second equation in (4.2) implies direct matching of the shear stress on the porous and clear fluid
sides of the interface. This assumption could be relaxed to allow for a possible jump in the shear stress at the
interface; however, for the purpose of this study the additional complexity is not necessary. The second
equation in (4.2) also assumes that the wall and the interface are both hydraulically smooth; this assumption

could berdaxed utilizing the approach developed in Zhu and Kuznetsov (2005).
Finally, at the lower wall the foll owing no-slip boundary condition isimposed

ut=0 a z"=0. (4.3
5. Heat transfer in the channel

The dimensionless temperatureis defined as

w (5.1)

where the mean flow temperature is defined as follows

T =L OyTdz. (5.2)

Un(2H)
The Nussdt number is defined as

Nu :ZH—q‘% .
k(Tw - Tm)
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For the case of a constant wall heat flux, the dimensionless energy equation in the porous region
ezt en)is

* ok . O of U
S Zu—+Nu:i+éQkiid—f+: (5.3)
4(H+) Up, dz" gk k¢ Hdz' g
where
K
et _ Km CPrReu*, (5.4)
kf kf

is the dimensionless effective thermal conductivity of the porous medium, which accounts for thermal
dispersion (Nield and Begjan, 1999).
The dimensionless mean flow ve ocity in Eq.(5.3) is defined as follows

2H*
Odz” (5.5)
0

1
+
PR

For the case of a constant wall heat flux, the dimensi onless energy equation in the clear fluid region
(H* ezt £2n")is

+ A .. l]
L v o d &g L PO

e e & ™ ey 0

k... Oaf+ +
1:|ZJ'—H+-0_1:|Z+:H++0 and ki:ﬂf+ :ﬂf+ a Z+:H+ (57)
g fﬂﬂz z'=H*-0 Tz zt=H*+0
df+ =0 a z"=0
dz

Finaly, the Nussdt number can be found from the following compatibility condition

2H*
O fdz" =2H"up,. (5.8)
0

For the case of a constant wall temperature, the dimensi onless energy eguation in the porous region
(o £z £H *) is
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—Nuf =— & =g, (5.9)

and the dimensionl ess energy equation in the clear fluid region (H+ £z £2H +) is

Prodf U
Ao Nuf :—g +my — S a
4iH D ruadz g

The boundary conditions defined by Eq.(5.7) stand, and the compatibility condition for finding the
Nussdt number becomes

(5.10)

Nu=-2H "I , (5.11)
TIZ z+=2H"
6. Resultsand discussion
Computations are performed for the following parameter values
H*=10°; Da=10%, 10°°, and 10™%; cz =055; my /m =1;
(6.1

M(l J)Dj/z

j =0.95; kp/k¢=1; C=01; Pr=1, Pr,=1; Re [ 32

p—H

Figure 2a displays velocity distributions in the channd for three different values of the Darcy
number. As expected, the increase of the Darcy number leads to an increase of the filtration ve ocity in the

porous block. It aso leads to an increase of the dimensionless vel ocity at the porous/fluid interface, ui+ , and,
consequently, to a velocity increase in the clear fluid region. Figures 2b and 2c display distributions of the
dimensionless temperature for the constant wal heat flux and the constant wall temperature a the upper
wall, respectively. The kinks in the profiles of the di mensionless temperature at the interface (at z* =1000),

which are clearly visible on the curves that correspond to Darcy numbers equal to 10°3 and 1072, are
explained by the influence of thermal dispersion on thermal conductivity in the porous layer. According to
Eq.(5.4), mixing at a pore scale results in increasing effective therma conductivity of the porous layer as
velodity in the porous layer increases. The kinks are not visible on the temperature profiles that correspond to

Da=10"* because, according to Fig.2a, for this Darcy number the dimensionless velocity at the
porous/fluid interface is too small to cause a significant increase of therma conductivity in the porous
layer.
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Fig.2. Profiles of the dimensionless velocity (a) and dimensionless temperature for the isoflux (b) and
isothermal (c) upper wall.
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Figures 3a and 3b display the dependence of the Nussdt number on the Darcy number for

H* =1000 and 2000, respectivdy. As expected, the Nusselt number increases as the Darcy number
increases. Nu aso increases as the Reynolds number based on the channd width and the friction vel ocity at

the upper wall, H™ =1000, increases.
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Fig.3. Nussdlt number versus Darcy number for H* =1000 (a) and H ™ =2000 (b).
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