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A problem of turbulent flow in a channel with a permeable wall recently considered in Hahn and Choi (2002) 

is extended to include heat transfer. A ε−k  model is utilized to investigate this problem numerically. The 
modeling is based on the assumption that the flow in the channel is turbulent while in the porous block the flow 
remains laminar. The wall functions approach is utilized to determine the boundary conditions for the k and ε  
equations. The dependence of the Nusselt number on the Darcy and Reynolds numbers is investigated. 

 
1. Introduction 
 
 Fluid flow in a channel bounded on one side by a solid wall and on the other side by a porous block 
has been recently investigated by Hahn and Choi (2002) who were interested in extending the classical 
problem of Beavers and Joseph (1967) to the case when the flow in the channel is turbulent. The purpose of 
this paper is to extend this problem to include heat transfer due to turbulent forced convection flow in the 
channel. 
 Figure 1 displays a schematic diagram of the problem investigated in this paper. A parallel-plate 
channel of thickness H is bounded on the top by a solid wall and on the bottom by a porous block whose 
thickness is the same as that of the channel. The flow is driven by a constant pressure gradient. Two cases of 
the thermal boundary condition at the upper wall are considered: the upper wall is assumed to be either 
subjected to a constant heat flux or isothermal (with a temperature wT ). The lower wall (the one that bounds 
the porous block) is assumed adiabatic. 
 

 
 

Fig.1. Schematic diagram of the problem. 
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 Although many recent papers considered the modeling of turbulence in porous media (see recent 
review chapter by Lage et al. (2002)), herein the assumption utilized in Hahn and Choi (2002), that the flow 
in the porous block remains laminar, was adopted. As discussed in Zhu and Kuznetsov (2005), this 
assumption will probably fail if the medium is hyperporous, but should hold for most practical porous 
media. 
 
2. Mathematical model 
 
 As Fig.1 shows, the flow domain can be divided into two regions, the clear fluid region (the channel) 
where the flow is assumed turbulent, and the porous block, where the flow is assumed laminar. In the 
turbulent (clear fluid) region, a ε−k  model is utilized. 
 
3. Momentum equation for the clear fluid region and the ε−k  model formulation  
 
 For a hydrodynamically fully developed flow, the velocity distribution in the clear fluid region can 
be computed from the following equation 
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where +u  is the dimensionless velocity, τuu ; u is the longitudinal velocity; τu  is the wall friction velocity, 

ρτw ; wτ  is the shear stress at the upper wall (at H2z = ); +H  is the dimensionless thickness of the gap 

between the wall and the porous interface, vHuτ ; H is the thickness of the gap between the wall and the 

porous interface; v  is the fluid kinematic viscosity; +z  is the dimensionless vertical coordinate, vzuτ ; +x  

is the dimensionless horizontal coordinate, vxuτ ; +µT  is the dimensionless eddy viscosity, µµT ; µ  is the 

fluid dynamic viscosity; and Tµ  is the eddy viscosity. It should be noted that +H  can also be interpreted as 
a Reynolds number based on the channel width and the friction velocity at the upper wall. 
 At the upper wall, Eq.(3.1) must satisfy the following no-slip boundary condition 
 
  0u =+      at     ++ = H2z . (3.2) 
 
 In the clear fluid region, the following ε−k  model is utilized. For the fully developed flow, the 
turbulence kinetic energy equation can be presented as 
 

  ( ) 0
z
k1

zz
u

T

2

T =












∂

∂
µ+

∂

∂
+ε−











∂

∂
µ

+

+
+

+
+

+

+
+  (3.3a) 

 
where  
 
  2ukk τ

+ =      and     4
f uv τ

+ ε=ε . (3.3b)\ 
 
 The dissipation rate equation for the fully developed flow is 
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 The dimensionless eddy viscosity can be found from the following equation 
 

  ( )
+

+

µ
+

ε
=µ

2

T
kC . (3.5) 

 
 The closure coefficients for the ε−k  model are 
 
  44.1C 1 =ε ,       92.1C 2 =ε ,       3.1=σε        and       09.0C =µ . (3.6) 
 
 Boundary conditions for the k  and ε  equations are found from the wall functions (Henkse and 
Hoogendoorn, 1989). It should be noted that wall functions are traditionally used to determine boundary 
conditions at the solid wall, and the utilization of wall functions to determine boundary conditions at the 
interface is an additional approximation. For +k , the following boundary condition is imposed at the 
interface and at the wall, respectively 
 

  
µ

+ =
C
1k        at       ++ = Hz        and       ++ = H2z . (3.7) 

 
 For +ε , the following boundary condition is imposed at the first inner computational grid points 
from the interface and the wall (these grid points are located inside the clear fluid region) 
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where +∆z  is the mesh size in the z-direction (the grid points where this condition is imposed must be 
positioned outside the laminar sublayer, meaning that their distance from the interface and wall, respectively, 
must be larger than 11.5 in the wall coordinates). 
 In order to check whether the flow in the clear fluid gap is indeed turbulent, the Reynolds number 
based on the width of the clear fluid domain, H, and the mean velocity in this region, ( ) flclearmU , is 
calculated as 
 
  ( ) ( ) ++=ν= HUHU flclearmfflclearmflclearRe  (3.9) 
 
where ( ) flclearmU +  is the dimensionless mean velocity in the clear fluid region, ( ) τuU flclearm  
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 For the flow in a channel, the critical Reynolds number is 3104 × . 
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4. Momentum equation for the porous region 
 
 The Brinkman-Forchheimer-extended Darcy equation (1999) is utilized to model the laminar flow in 
the porous region. Utilizing the dimensionless variables defined above, this equation can be presented 
as 
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where Fc  is the Forchheimer coefficient; Da is the Darcy number, 2HK ; K is the permeability of the 
porous medium; and effµ  is the effective viscosity in the porous region. 
 To match the laminar flow velocity in the porous region with the turbulent flow velocity in the clear 
fluid region the following matching conditions are utilized at the porous/fluid interface 
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   (4.2) 
  at        ++ = Hz . 
 
 The second equation in (4.2) implies direct matching of the shear stress on the porous and clear fluid 
sides of the interface. This assumption could be relaxed to allow for a possible jump in the shear stress at the 
interface; however, for the purpose of this study the additional complexity is not necessary. The second 
equation in (4.2) also assumes that the wall and the interface are both hydraulically smooth; this assumption 
could be relaxed utilizing the approach developed in Zhu and Kuznetsov (2005). 
 Finally, at the lower wall the following no-slip boundary condition is imposed 
 
  0u =+        at       0z =+ . (4.3) 
 
5. Heat transfer in the channel 
 
 The dimensionless temperature is defined as 
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where the mean flow temperature is defined as follows 
 

  ( ) ∫=
H2

0m
m uTdz

H2u
1T . (5.2) 

 
 The Nusselt number is defined as 
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 For the case of a constant wall heat flux, the dimensionless energy equation in the porous region 
( )++ ≤≤ Hz0  is 
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where  
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is the dimensionless effective thermal conductivity of the porous medium, which accounts for thermal 
dispersion (Nield and Bejan, 1999). 
 The dimensionless mean flow velocity in Eq.(5.3) is defined as follows 
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 For the case of a constant wall heat flux, the dimensionless energy equation in the clear fluid region 
( )+++ ≤≤ H2zH  is 
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 Equations (5.3) and (5.6) must be solved subject to the following boundary conditions 
 
  0=φ      at     ++ = H2z , 
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 Finally, the Nusselt number can be found from the following compatibility condition 
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 For the case of a constant wall temperature, the dimensionless energy equation in the porous region 
( )++ ≤≤ Hz0  is 
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and the dimensionless energy equation in the clear fluid region ( )+++ ≤≤ H2zH  is 
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 The boundary conditions defined by Eq.(5.7) stand, and the compatibility condition for finding the 
Nusselt number becomes 
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6. Results and discussion 
 
 Computations are performed for the following parameter values 
 
  310H =+ ;    210−=Da ,    310− ,    and    410− ;    55.0cF = ;    1feff =µµ ;  
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 Figure 2a displays velocity distributions in the channel for three different values of the Darcy 
number. As expected, the increase of the Darcy number leads to an increase of the filtration velocity in the 
porous block. It also leads to an increase of the dimensionless velocity at the porous/fluid interface, +

iu , and, 
consequently, to a velocity increase in the clear fluid region. Figures 2b and 2c display distributions of the 
dimensionless temperature for the constant wall heat flux and the constant wall temperature at the upper 
wall, respectively. The kinks in the profiles of the dimensionless temperature at the interface (at 1000z =+ ), 
which are clearly visible on the curves that correspond to Darcy numbers equal to 310−  and 210− , are 
explained by the influence of thermal dispersion on thermal conductivity in the porous layer. According to 
Eq.(5.4), mixing at a pore scale results in increasing effective thermal conductivity of the porous layer as 
velocity in the porous layer increases. The kinks are not visible on the temperature profiles that correspond to 

410−=Da  because, according to Fig.2a, for this Darcy number the dimensionless velocity at the 
porous/fluid interface is too small to cause a significant increase of thermal conductivity in the porous 
layer. 
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Fig.2. Profiles of the dimensionless velocity (a) and dimensionless temperature for the isoflux (b) and 
isothermal (c) upper wall. 
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 Figures 3a and 3b display the dependence of the Nusselt number on the Darcy number for 
1000H =+  and 2000, respectively. As expected, the Nusselt number increases as the Darcy number 

increases. Nu also increases as the Reynolds number based on the channel width and the friction velocity at 
the upper wall, 1000H =+ , increases. 
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Fig.3. Nusselt number versus Darcy number for 1000H =+  (a) and 2000H =+  (b). 
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