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The effect of radiation on the free convection from a vertical plate embedded in a power-law fluid saturated 
porous media has been considered. Similarity equations have been obtained and solved numerically. It was found 
that there is an increase in the boundary layer thickness with an increase in the radiation parameter N and a 
decrease in the power-law index n was observed. 
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1. Introduction 
 
 Heat transfer in porous media occurs in practical applications in geophysics, energy related 
problems, environment, etc. An excellent summary of the work on this subject is given in the monographs by 
Ingham and Pop (1998; 2002), Nield and Bejan (1999), Vafai (2000), Pop and Ingham (2001), Bejan and 
Kraus (2003), Ingham et al. (2004) and Bejan et al. (2004). 
 Many fluids involved in industrial applications have a non-Newtonian behaviour. On the other hand, 
if the processes take place at a high temperature, radiative effects cannot be neglected (Modest, 2003; Siegel 
and Howell, 1992). The effects of radiation on free convection past a horizontal plate with a variable wall 
temperature and embedded in a non-Newtonian fluid saturated porous medium has been studied by Mehta 
and Rao (1994). Mansour and Gorla (1998) have considered the case of mixed convection from a wedge and 
Mohammadein and El-Amin (2000) have studied the case of mixed convection from a horizontal plate in a 
porous medium. 
 The object of this Note is to study the radiation effects on free convection from a vertical flat plate 
embedded in a power-law fluid saturated porous medium using the Rosseland model.  
 
2. Basic equations 
 
 Consider a semi-infinite vertical flat plate which is maintained at a constant temperature wT  and 
which is embedded in a non-Newtonian fluid saturated porous medium of ambient temperature ∞T , see 
Fig.1. Using the boundary layer and Boussinesq approximations the mathematical model is given by the 
continuity, modified Darcy law and energy equation 
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respectively, where x and y are the Cartesian co-ordinates along and normal to the plate, respectively, u and v are 
the velocity components along x- and y- axes, respectively, T is the fluid temperature , n is the power-law index, 
β  is the thermal expansion coefficient, ∗ν  is the modified kinematic viscosity, mα  is the thermal diffusivity of 

the medium, ρ  is the density, pc  is the specific heat at constant pressure, rq  is the radiative heat flux, and the 

lower indices ∞  and f refer to the ambient conditions and fluid phase, respectively, and the upper index ∗  refers 
to the modified quantities in the power-law fluid. The modified permeability ( )nK ∗  is given by 
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where ϕ  is the porosity and d is the particle diameter. It is worth mentioning that 1n <  corresponds to a 

pseudoplastic fluid, 1n =  to a Newtonian fluid and 1n >  to a dilatant fluid. The radiative heat flux rq  under 
the Rosseland approximation has the form 
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where σ  is the Stefan-Boltzman’s constant and χ  is the mean absorption coefficient. 
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Fig.1. Physical model and co-ordinate system. 
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 Equations (2.1)-(2.3) have to be solved subject to the boundary conditions 
 
  0v = ,          wTT =           for          0y = ,          0x > , 
   (2.6) 
  0u → ,       ∞→ TT          for         ∞→y ,        ∞<<∞− x .  
 
 In order to obtain similarity solutions, i.e., the governing partial differential equations reduce to 
ordinary differential equations, of Eqs (2.1)-(2.3) subject to the boundary conditions (2.6), we introduce the 
following variables 
 

  ( ) 21*
xmf Raαψ=η ,          ( )

∞

∞

−
−

=ηθ
TT
TT

w
,          ( )xy21*

xRa=η                  (2.7) 

 
where ψ  is the stream function defined in the usual way as yu ∂ψ∂=  and xv ∂ψ∂−=  and ∗

xRa  is the 
modified local Rayleigh number which is defined as 
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 Substituting (2.7) into Eqs (2.1)-(2.3) and (2.6), we obtain  the following ordinary differential 
equations 
 
  ( ) 0f =″′ , (2.9) 
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subject to the boundary conditions 
 
  ( ) ( ) ( ) 0f1000f =∞′=θ= ,,                                       (2.11) 
 
where N is the radiation parameter 
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and wθ  is the temperature parameter 
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 Using the energy balance on the surface of the plate it is possible to calculate the coefficient of the 
convective heat transfer, h, defined as 
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and thus we can obtain the local Nusselt number 
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 We mention that in the case when the radiation effect is absent ( )0N = , Eqs (2.9) and (2.10) reduce 
to those obtained by Chen and Chen (1988). 
 
3. Results and discussion 
 
 Equations (2.9) and (2.10), subject to the boundary conditions (2.11) were solved numerically using 
the Runge-Kutta method in combination with a shooting technique for different values of the parameters N, 

wθ  and n ( )5.25.118.05.0n0.25.11.110510N w ,,,,;,,;,,, ==θ= . The obtained values of the local Nusselt 
number when the radiation effect is absent ( )0N =  are given in Tab.1 and the values of Chen and Chen 
(1988) are also included in this table for the sake of comparison. It is seen that the present results are in very 
good agreement with those reported by Chen and Chen (1988) and this confirms the accuracy of the present 
method. The values of the local Nusselt number for different values of the parameters ( )0N ≠ , wθ  and n are 
given in Tab.2. 
 Figures 2-4 show the dimensionless temperature profiles for some values of the governing 
parameters of interest. We can see that the thickness of the boundary layer increases as the radiation 
parameter N and the temperature parameter wθ  increase. The radiation effect is more evident by increasing 
the boundary layer thickness for the pseudoplastic fluids ( )1n < , the thickness becoming lower for the 
Newtonian ( )1n =  and dilatant 1n >  fluids. 
 
Table 1. Values of the local Nusselt number ( )0'θ−  for 0N =  and different values of the parameter n. 
 

N Chen and Chen (1988) present results 

0.5 0.3768 0.377670 

0.8 0.4238 0.423999 

1.0 0.4437 0.443885 

1.5 0.4752 0.475379 

2.0 0.4938 0.493804 

2.5 0.5059 0.505912 
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Table 2. Values of the local Nusselt number ( )0'θ−  for different values of the parameters N, n and wθ . 
 

 
n 

 
N 

( )0θ′−  

1.1w =θ                                     5.1w =θ                                    0.2w =θ  

0.5 1 
5 

10 

0.129473                                   0.109367                                    0.095490 
0.056356                                   0.049000                                    0.043692 
0.039518                                   0.034618                                    0.030997 

0.8 1 
5 

10 

0.140203                                   0.118992                                    0.104629 
0.062999                                   0.052978                                   0.047731 
0.042194                                   0.037386                                    0.033836 

1.0 1 
5 

10 

0.144489                                   0.122876                                    0.108364 
0.061836                                   0.054560                                    0.049370 
0.043234                                   0.038486                                    0.034990 

1.5 1 
5 

10 

0.150952                                   0.128776                                    0.114095 
0.064111                                   0.056939                                    0.051870 
0.044768                                   0.040138                                    0.036760 

2.0 1 
5 

10 

0.154573                                   0.132108                                    0.117363 
0.065364                                   0.058269                                    0.053288 
0.045611                                   0.041059                                    0.037747 

2.5 
 

1 
5 

10 

0.156894                                   0.134251                                    0.119478 
0.066159                                   0.059119                                    0.054202 
0.046144                                   0.041649                                    0.038390 

          

 
 

Fig.2. Dimensionless temperature profiles for 5.0n = , 10510N ,,,=  and ( )⋅⋅=θ __1.1w , ( )___5.1  and 
( )......2 . 
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Fig.3. Dimensionless temperature profiles for 1n = , 10510N ,,,=  and ( )⋅⋅=θ __1.1w , ( )___5.1  and 
( )......2 . 

 

 
 

Fig.4. Dimensionless temperature profiles for 5.1n = , 10510N ,,,=  and ( )⋅⋅=θ __1.1w , ( )___5.1  and 
( )......2 . 
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4. Conclusions 
 
 Natural convection over a vertical flat plate embedded in a fluid-saturated porous medium exposed 
to thermal radiation has been investigated. Numerical solutions are given in terms of three parameters, 
namely the radiation parameter, N, the plate temperature, wθ , and the power-law index, n. It is found that 
both the heat transfer, ( )0'θ− , and the non-dimensional temperature profiles, ( )ηθ , are greatly affected by 
these parameters. The solution showed that the values of heat transfer from the plate without radiation 
( )0N =  are in very good agreement with those reported by Chen and Chen (1988). 
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Nomenclature 
 
 pc  – specific heat at constant pressure 
 d  – particle diameter 
 f  – reduced stream function 
 g  – gravitational acceleration 
 h  – heat transfer coefficient    
 k  – thermal conductivity 
 *K  – modified permeability of the porous medium 
 n  – power-law index 

 N  – radiation parameter 
 xNu  – local Nusselt number 

 rq  – radiative heat flux 
 *Ra  – modified Rayleigh number for porous medium 
 T  – fluid temperature 
 wT  – wall temperature  
 ∞T  – ambient temperature 
 v,u  – velocity components along the x- and y-axes, respectively 
 y,x  – Cartesian coordinates 
 mα  – effective thermal diffusivity 
 β  – coefficient of thermal expansion 
 χ  – mean absorption 
 ϕ  – porosity 
 η  – similarity variable 
 *ν  – modified kinematic viscosity 
 θ  – non-dimensionless temperature 
 wθ  – temperature parameter 
 ρ  – fluid density 
 σ  – Stefan-Boltzman constant 
 ψ  – stream function 
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